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Abstracts and key words of the three parts and of the conclusion 
 

Part I Abstract 
 
The first part of the state-of-the art focuses on the origins of road safety modeling, covering 
data, early models and the public health context of model formulation and use. 
 
Yearly tallies of road victims by severity category, typically computed nowadays from police 
reports, emerged over time in many countries from systematic determination by 
Administrations of Justice of the non-criminal nature of reported individual road crash and 
damage events. Such data series on retained “accidents”, as available over the last 150 years 
(notably in France), imply very important gains in kilometric safety rates over time with the 
replacement of horse-drawn carriages by motor vehicles and with the spread of motor 
vehicles themselves. 
 
However, multivariate statistical analyses reaching beyond two-way frequency tables are 
recent: aggregate national fatality rates were first modeled (as Gaussian distributions with a 
regression component) by Smeed in 1949, but morbidity rates were then neglected; and 
samples of discrete occurrences of individual accidents (of any severity) were first modeled 
(as Poisson distributions with a regression component) by Weber in 1970, but without 
concern for national population values. 
 
These seminal single-outcome models gave rise to two streams of explanations, distinct to this 
day, that share a “public health” epidemiological emphasis on the establishment of multiple 
correlations which give rise to testable corrective policy interventions. These are still of 
limited value in the explanation of the simultaneous peaking of fatalities in many OECD 
countries in 1972-1973 (called “the Mystery of 1972-1973”, hypothesized here to be 
occasioned by the passing of the demographic baby boom wave) and as guidance in the 
design of policies for the containment of road risk arising from the intrinsic dangerousness of 
individuals. 
 
Part I Key Words. Observed road victims without crime; road crimes without observed 

victims; discrimination and moments of random variables; unsustainable horse 
transport; safer motor vehicle transport; secular gains in kilometric road safety 
rates; aggregate national data; individual accident data; Bortkiewicz; Smeed; 
Weber; Gaussian; Poisson; regression component; public health knowhow; 
Mystery of 1972-1973 peak in road fatalities; baby boomers reaching maturity; 
intrinsic dangerousness of individuals. 
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Part II Abstract 
 
The second part of the state-of-the-art focuses on the development of the founders’ double 
streams explaining single outcome indicators (probability of accidents and fatalities, 
respectively) by fixed form regression, as outlined in the Part 1. Following Page (1997, 2001) 
and others, we use as turning point of the evolution of both aggregate and discrete 
approaches the DRAG-1 model of 1984, itself based on aggregate data, which introduced 
four key innovations in principle applicable to both streams. 
 
The DRAG approach (i) decomposed losses (victims or damages) into a product of exposure, 
frequency and severity terms and formulated distinct explanations for all such terms; (ii) 
structured the decomposed problem as a system of simultaneous equations that included not 
only those three levels but a fourth one designed to explain driver behavior and make it 
endogenous; (iii) within each of the four principal levels, took into account subcategories of 
severity the joint determination of which constituted a complete system of demand that 
brought numerous substitutions and complementarities into play; (iv) used for all specified 
equations flexible mathematical forms of the Box-Cox type applied to all regression variables. 
These forms were decisive in defining statistical correlations (signs included), upon which 
they themselves depended, and in justifying the initial breakdown into multiple risk 
dimensions by revealing the mathematical form appropriate for each level (exposure, 
frequency, and severity) of the decomposition. 
 
Using these four critical dimensions, we summarize both aggregate and disaggregate model 
developments, classifying them notably with respect to number of risk outcome levels 
addressed, severity categories accounted for, mathematical form of their variables and 
number of classes of explanatory variables put to contribution. For aggregate models, we 
document evolution from early ones explaining a single damage category for one region to 
the latest explaining multiple damage categories for many regions, not forgetting 
intermediate cases. With respect to the disaggregate models, in addition to providing a 
classification with respect to the same four dimensions, we raise the specific problems of 
aggregation from individual to population values without which discrete analysis remains of 
limited relevance, giving disproportionate attention to the landmark by Bolduc et al. (1993, 
1994, 2012). 
 
Part II Key Words. DRAG road accident model innovations; decomposition of road damages 

among exposure, frequency and severity dimensions or risks; endogeneity of 
driver behavior; Box-Cox forms and unconditional regression signs; road safety 
outcomes as a demand system; multivariate formulations; time horizon of 
adjustment; survey of aggregate model development; single-outcome, single-
region models; multiple-outcome, multiple-region models; survey of discrete 
model development; aggregation from individual to population values. 
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Part III Abstract 
 

The third part of the state-of-the-art focuses on the future of road safety modeling and on 
conjectures concerning the evolution of national safety indicators. In the absence of 
econometric developments specific to road safety modeling, the research future must rely on 
pre-existing statistical procedures of econometrics applied to discrete/count and to aggregate 
data. In terms of contents, growing interest in the heterogeneity of road accident outcomes by 
category of victims could lead to treatments of this issue across research streams, say by top-
down and bottom-up developments, but this speculation does not rest on extant adequate 
formulations of the issue of road user class and victim analysis. But understanding the time 
profile of aggregate national performance indicators is quite another matter. 
 

Concerning forecasting, a key question in countries where the absolute maximum of fatalities 
is still to come is that of its occurrence, but the answer requires a yet missing explanation of 
“the mystery of 1972-1973”, here hypothesized to result from the passing demographic wave 
(see Part 1). This ignorance affects the corresponding answer, in countries for which the 
maximum is long past, as to whether current performance is heading toward a minimum or 
toward a constant level: such a forecast can hardly be made if the maximum remains 
unexplained. In addition, it matters whether any envisaged asymptotic limit amounts to a 
natural rate combined with a random component, or includes more. It is conjectured that a 
regression component that would include speed, traffic density and vehicle occupancy rates 
could explain both the peak of 1972-1973 and the current evolution, notably of fatalities. 
 

In the absence of a certain explanation of the Meadow/Matterhorn/Cervin peak profile of the 
past maximum, forecasts can only combine random terms and known explanatory factors in 
the notion of Conditional Expected Safety Performance, which includes that of (Conditional) 
Expected Maximum Insecurity (EMI) and seems preferable to Vision Zero or to alternatives 
based on analogs of the natural rate of unemployment. Conditional expectations do not skirt 
the issue of the “level of the tide” by assuming the presence of an unexplained trend level and 
manually changing it by shifts due to well understood specific safety measures.  
 

Forecasts of explanatory variables require views on the political market (notably on the 
identity of the future median voter), on the workings of individual risk compensation, on the 
role of economic activity and on the chances of decoupling growth from transport demand, a 
weak prospect where communications appear more as gross complements than substitutes. 
 
Part III Key Words. Road victims by category; natural road accident rate; vision zero; 

Conditional Expected Road Safety Performance; expected maximum insecurity 
(EMI); median voter; risk compensation; uncoupling transport and the economy; 
transport and communications as complements; speed/traffic density/vehicle 
occupation rate conjecture. 

 

Conclusion Abstract 
The conclusion re-emphasizes the lack of recognition given to Weber’s work of 1970-1971 
and selects for further comment some questions left unanswered: (i) whether the way down 
from the Meadow/Matterhorn/Cervin-shaped peak in road fatalities around 1972-1973 leads 
to a plain or not in the U.S., and exactly how the Speed/traffic density/vehicle occupancy rate 
Conjecture could be tested to clarify the matter; (ii) how to distinguish, in a plain, the strata 
for bottom-of-the-barrel unresponsiveness in drivers, uncontrollable factors and the 
randomness level inherent to accidents. Finally, an explanation of the popularity of 
conditional severity models is presented. 
 
Conclusion Key Words. Fatalities in the United States; the return of accident proneness. 
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Part 1. National road safety performance: data, the emergence 
of two singleoutcome modeling streams and public health 

1. The emergence of national safety performance statistics 

1.1. National road safety performance statistics built from police reports 
In most industrialized countries, and in particular in the OECD’s 30 member countries, police 
reports or other reports of road accidents are automatically computed into statistics on 
numbers of victims and categories of accident over a given time period. Government statistics 
cover accidents causing bodily harm (death, injury) and accidents causing material damage1. 
These statistics are published on an annual basis most of the time but some are also produced 
on a monthly basis. Occasionally, public policy research groups publish results relative to 
declared road safety performance targets (ITF/OECD/JTRC, 2008a, 2008b). A number of 
international institutions forecast and publish annual world figures on the expected number of 
road victims, killed or injured (WHO et al., 1996; WHO, 1999, 2004). These statistics raise a 
hard question: given the 600 million cars in existence in the world today and the 1.4 million 
persons killed every year on roads (more than 3,000 per day), what will occur if the forecast 
of 3 billion cars actually becomes reality, a number envisioned in the near future? 

1.2. Can one make sense of something as unpredictable as accidents? 
It is proper to question the grounds on which analyses of these world tallies are undertaken by 
examining the underlying models used to explain aggregates and generate forecasts. Our 
interest in explanation require so-called “structural” models, which are generally more than 
simple autoregressive forecasts of time series, that seek to explain why the outcomes evolve 
as they do. Our interest is also often in cross-sectional data, less popular with “autoregressive 
activists”, and naturally also in individual data, often called “discrete” even if many of the 
relevant variables are continuous. But, if understanding “structurally” means digging below 
the number itself and using something else than the thing itself to explain it, what is there to 
be explained by “other” factors if accidents are by definition chancy and random, rather than 
voluntary? 

1.3. The traditional source of statistics on road accidents is the Department 
of Justice 
It is only relatively recently that national statistics on road safety performance have come to 
the attention of analysts. One would assume that this interest would come from transport 
departments and institutions, but it actually originated in the judicial arm of government 
where fiscal or legal reasons require that each and every death be accounted for. In order to 
claim taxes at time of death, Justice departments classify deaths by cause, defined as 
accidental, natural or criminal, i.e., make use of the categories A, B, D and E in Table 1. 
 

                                                 
1 Insurance companies occasionally publish information on accidents causing material damage and their 
frequency. 
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Table 1. Accidents and crimes on the road: role of the official report 
and of the individual’s intent 

Case A B C D E 

Category 
of deed Accidental Normal 

Intrinsically predictable 
(highly probable on average or 

too little uncertain) 

Self mutilation or 
suicide 

aimed at author 

Criminal 
aimed at 
others 

Example drowning, 
fall, fire wear, sickness repeated sexual aggressions 

 in the past 
self mutilation to 
obtain insurance [...] 

Road 
example 

road 
accident 

driving under the 
influence of 
medicines 

driving under the influence 
of alcohol or narcotics 

suicide, e.g. car 
driven into a train 

car used 
as an arm

Deed or act Brutal 
external Internal to the individual Brutal 

external 
Reported 
occurrence 

Deed 
fatal, injury or material damage 

Disposition without deed 
 fatal, injury or material damage 

Deed 
fatal, injury or material damage 

Individual’s 
intent and 
realization 

involuntary deed, 
zith a report of the deed 

individual state, voluntary or 
not, assimilated to a crime 
zithout a reported  deed 

voluntary  
premeditated deed  

with a report of the deed 

1.4. The slow integration of safety into policy making 
For a long time, well known or important texts written on or about transportation rarely 
referred to accidents. For example, Duclos (1759), Permanent Secretary of the Académie 
Française, in his very famous “Essais sur les ponts et les chaussées, la voirie et les corvées”, 
mentions accidents only in passing, in a two-page long discussion about the cobblestones2 of 
Paris claimed to be so frayed at the edges that carriage wheels wear them out fast, making the 
surface slippery for people to walk on when wet and dangerous for horses when dry (p.253, 
op. cit). He mentions accidents again only once in a section dealing with the banking of roads 
in turns: these were apparently so poorly built that they would cause accidents, thus harming 
both pedestrians and carriages at night (p.255, op. cit.). 
 
This benign neglect of accidents was indeed the rule in the transportation policy in one of the 
largest countries of Europe at the time, a country where hundreds of travelers, if not more, 
were killed every year on the roads, crushed or struck by horses and horse-drawn carriages! 
Accidents and safety became integrated into policy very slowly: the concern arose first and 
foremost as the responsibility of Justice Departments. 

1.5. What is an accident and what is a crime? 
It seems that Justice has traditionally sought to differentiate between unintentional accidents 
and intentional ones: the emergence of category C in Table 1 is fairly recent. It refers to the 
criminalization of the “noted state” of a person without reference to any current related act or 
deed, intended or not, of that person. 
 
Previously, our legal frameworks refused to consider as criminal physiological states (e.g. 
inebriation), or psychological states (propensity towards sexual assault), in the absence of 
deeds or acts. Nevertheless, since the criminalization of inebriation in the 1970s, other 
“states” have come to be also considered as “criminal” whether or not they were accompanied 
by acts. Thus, simple possession of drugs, for example, is nowadays automatically punishable 
notwithstanding lack of proof of intent to use or sell narcotics. 

                                                 
2 Duclos recommended that the sandstone cobblestones be changed every 20 years. 
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1.6. The victimless road crime: a new concept in need of a justification 
Historically and from a legal standpoint, dangerous or incompetent individuals could be 
isolated from society, forcefully3 if necessary. In the absence of specialized facilities to house 
these “intrinsically dangerous” individuals, some hospitals partially became prisons4. Today, 
some prisons have partially become hospitals for “intrinsically dangerous” asocial persons 
(e.g. repeated and proven sexual assault offenders) or high-risk individuals (e.g. with repeated 
arrests for inebriety) as defined by the Criminal Code. Today also, many of these individuals 
are neither hospitalized nor treated.  
 
The lack of a clear definition of what is a crime sometimes creates paradoxical situations5 that 
modeling may help to solve by formalizing the distinction between “what is expected” in a 
state (the first moment of a random variable) and the “variability” (meaning the variance or 
second moment of a random variable) of what is expected. The judicial system seems to 
evolve as if, on roads at the very least, discrimination (in the sense of the first moment that 
tells us that on average an ‘inebriated’ individual will kill or harm another) is preferable to 
inter-individual variability (that tells us that being inebriated does not guarantee that this 
individual will have an accident causing bodily harm, even if it has been established that 
inebriation does so, on average, in such cases). This occurs when, everywhere else, selective 
discrimination based on averages of group characteristics is denounced as being unfair to 
inter-individual variability.  

1.7. Discrimination and moments of road accident occurrences 
Discrimination means that we take decisions concerning individuals belonging to a group 
because we correctly expect members of the group to produce, on average, X consequences, 
irrespective of the fact that it is untrue of any specific individual and perhaps even untrue of 
all individuals in the group. For example, the average risk of road accidents per kilometer 
varies with the driver’s age. The relation forms a U shaped curve from ages 20 to 80, with a 
minimum (see Figure 7.A) close to ages 40-45. This does not mean that that any given 20-25 
year-old person is less safe than another from the 40-45 group, or that any mature person is 
safer at the wheel than a younger or an older one. 
 
Consider the moments of random variables. We know that taking some minor tranquillizers 
doubles the average risk of accidents (Skegg et al., 1979) and that certain drugs in particular 

                                                 
3 For example: up until the middle of the 20th Century, in the United States, a conviction for repeated sexual 
assaults could lead to castration.  
4 The historical origin and distinction between hospitals and prisons needs clarification. Prisons have always 
existed, but not hospitals. There were areas dedicated to lepers in antiquity, as there were also areas where the 
sick went to recuperate or to find cure: away from cities, in temples and around pools, such as Siloe’s, as well as 
in pagan centers of pilgrimage. But the origin of the hospital proper is attributed to Saint Basil the Great who 
created the institutionalization of care provided by dedicated personnel: in 371, he built the first hospital 
(nosokomia in official Greek – ever since Justinian) in Caesarea. Generally called to this day a Basiliad, the 
institution resembled a village where friendless strangers, the sick and the poor, lepers and old people were cared 
for and treated. The bringing together in one location by this Great Cappadocian of organized and trained 
personnel dedicated to caring for others created the first institutional supply of hospital service. He also wrote 
the first rules on how to care for the needy, rules that gradually developed into other monastic rules giving a 
large part to work, such as Saint Benedict’s. Hospitals or Basiliads were not prisons. 
5 In Quebec for instance, as in all jurisdictions that have adopted a Highway Code where the individual is not 
responsible for an accident causing bodily harm and where it is illegal to sue the driver responsible for the 
accident that killed a person (the “no fault” automobile insurance system), killing 10 people on the road in a year 
is not a punishable crime but driving after having had a bit too much to drink and killing no one is. This rule 
combines crimes without victims and victims without criminals. 
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multiply the average risk by 5 or more. But taking medication is not a criminal act. What, 
then, determines the moment when taking medication becomes “a tendency towards crime” or 
“intrinsically dangerous”? Is it the average or the standard deviation? Does the asymmetry of 
this probability (the third moment) play a role in the decision to label as “criminal” 
physiological states independently from any related actual misdeed? Or is there more than 
meets the eye, like some attitude towards alcohol in Puritans, or even their righteous hatred of 
libertines? 

1.8. Criteria used to determine accidental deaths and judicial tradition 
Justice departments have been compiling accidental deaths for a long time. In countries of 
Anglo-Saxon tradition for example, the Coroner (from Crowner, or Crown representative 
who, ever since the 12th Century in England, was appointed to make sure that taxes were paid 
upon death) is compelled by law to open an inquest whenever an accidental death occurs. This 
practice contributed to the building of national accounts of accidental deaths. In France, the 
criminal arm of the Justice department has been compiling statistics since 1826 but has been 
separating deaths by cause only since 1906 (Chenais, 1974). 
 
Generally speaking, other branches of Government became involved in tallying road 
accidents and their causes only after World War II. There was a gradual shift from seeing 
accidents as simple chance events to attempting to explain them. This shift took some 50 
years from the Russian of Polish origin Bortkiewicz (1898) to the British Smeed (1949). This 
slow process involved data gathering and only really took hold with the advent of computers 
and multivariate analyses. It deserves our attention. The introduction of individual factors in 
accidents, particularly medical ones, came later. More often than not, it focused on the 
construction of cross tables, on simple “before/after” tests, or used control groups to modify 
one variable at a time, “cause” and “effect” being linearly associated. Cross tables are rarely 
multivariate because their very design severely limits the number of factors that can be jointly 
taken into account. 

1.9. Road accidents, criminal acts, acts of terror and acts of war 
Let us turn to the definitions of deaths deemed “accidental” in the literature, i.e. of all deaths 
classified in Column A of Table 1. In principle, columns D and E refer to different kinds of 
literature dealing with crime or war. But some common elements can be found: first, all are 
generally defined as the result of a combination of systematic and random factors; in addition, 
the frequency of road accidents and that of terrorist acts or of acts of war are often explained 
by some common factors. 
 
To better illustrate this commonality, let us quote the great historian A.J.P. Taylor who 
associated road accidents directly to wars in the sense that “There are some conditions and 
situations that make them more likely, but there can be no system for predicting where and 
when each one will occur”. We will come back to this combination of systematic and random 
elements, for individuals and groups, later. 
 
A particular common factor is the disproportionate number of young men in a population 
(Bouthoul, 1970; Heinsohn, 2003), found today to be a recurrent factor in the frequency of 
wars and acts of terrorism. Figure 7. A shows that the same variable, an “age-sex” quality 
index of drivers, can be studied over time and by country. In fact, few multivariate analyses of 
the frequency of accidents on roads do without this age-sex indicator. The aging or 
rejuvenation of the population of licensed drivers will have a predictable impact on the 
average ratio of the risk per kilometer. Heinsohn’s famous “youth bulge” view (2008) belongs 
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to both literatures. On the other hand, some variables that look alike, population density for 
instance, provide very different explanations for wars (in Black Africa especially), where it is 
linked with land appropriation, and for road accidents, where it is linked with traffic 
congestion and road user categories. 
 
Weber (1970, 1971) opened the door to eventually associating road accident and criminal 
behavior. A number of authors today, like Brace et al (2009), are exploring this association, 
seeking to make sense of the positive correlation between criminal behavior and risk taking at 
the wheel of a car. 

2. The idea of random events and the data to be explained 
To understand the evolution of thought from the initial collection of data on road accidents to 
the actual models which seek to explain them, let us consider two of the best known statistical 
representations of chance events: the Gaussian bell-shaped normal distribution (Gauss, 1823), 
known to all students, and the Poisson distribution (Poisson, 1837), adapted to “small” 
numbers as first described in: The Law of Small Numbers by Ladislaus Bortkiewicz, published 
in 1898, known to all researchers. The idea of plotting and analyzing accidents systematically 
is attributed to Bortkiewicz who, like Student, rediscovered Poisson’s law and applied it to 
tables which described the number of soldiers of the Prussian army who were killed by blows 
from their horses. Bortkiewicz thought that these events were perfectly random, but we will 
point out that the question is in fact more complex because the mean of a variable that may 
seem random may shift, both for rare (“small number”) and frequent (“large number”) events. 

2.1. The horse and the birth of individual modeling 

2.1.1. Horses and accidents: towards a first discrete model of individual 
outcomes 
Bortkiewicz’s built a table giving the number of soldiers in the Prussian army killed from 
their horses’ kicks each year, in 10 of 14 cavalry corps, over a 20-year period (1875 to 1894). 
This army was the largest in Europe after the French-Prussian war of 1870. The total number 
of soldiers killed gave an average of r = 0,61 [=122/200] deaths per corps per year, a rate 
inferior to one. Bortkiewicz showed that the numbers in his table followed a Poisson 
distribution, and he illustrated clearly their frequency, Figure 1 showing the following values: 
109 corps-years without deaths, 65 with 1, 22 with 2, 3 with 3 and 1 with 4 victims. 
 

Figure 1. Poisson distribution, by army corps, of the number of Prussian cavalrymen killed by 
their horses’ kicks, from 1875 to 1894 

 
 

http://en.wikipedia.org/wiki/Ladislaus_Bortkiewicz
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For a long time after Bortkiewicz, his distribution was considered to be an illustration of pure 
random events. But it was also discovered that the army kept a logbook containing more than 
15 entries of information (including religion) for each soldier. These data later showed that 
the values obtained by Bortkiewicz varied according to the year and to the army corps of the 
soldier and that those values shifted the averages, if ever so slightly (Preece et al, 1988). The 
categorical data (also called Boolean, meaning that they are represented by 0 or 1), used to 
identify the year and the army corps, were in effect systematic variables: accordingly, maybe 
different army corps obtained their horses from different breeders, maybe the horses were of 
different breeds, or maybe the horses were affected by particular weather conditions one year 
more than the next. This means explaining a variable that is random and follows a certain 
distribution: it is therefore possible to “model” randomness, i.e. to find the factors that 
influence (at least) the average of chance events while still keeping them random about this 
mean. 

2.1.2. The first explanatory model of individual outcome data in 1970 
One had to wait a long time between Bortkiewicz and a model of accidents “with a regression 
component” proper, as one says to express the fact that the “propensity” parameter of the 
distribution in fact depends on various factors. The first of these models of the individual 
frequency of accidents is attributed to Weber (1970, 1971). He designed it, using 5 
explanatory variables, to explain 148 000 California accidents reported independently from 
their severity. 
 
His explanatory variables for the frequency At of accidents for the year 1963 were: the density 
of traffic, the driver’s age and driving record (At-1, the number of accidents for the previous 
1961-1962 period), and the driver’s police record (with 2 types of convictions for the previous 
1961-1962 period). Weber’s innovative inclusion of variables such as the driver’s past driving 
and police records laid the groundwork on which later models were founded and designed. 
His seminal specification will be much imitated later (e.g. Boyer et al., 1988; , 1994, 2012 et 
al., 1993) but hardly ever cited6. The next stage was aggregate modeling, relying on official 
data. 

2.1.3. Road transportation and accidents in the 19th Century 
In 1970, birth year of modeling with individual data, modeling based on aggregate official 
data was already well on its way since 1949, no doubt due to the existence of relatively long 
official series on accidents in a large number of countries. Even in the 19th Century, much 
could have been done with official data on accidents involving horses or horse-drawn 
carriages if the regression techniques had been available. 
 
For France, Figure 2 compares the number of deaths caused by horses and carts since 1854 to 
deaths caused by automobiles since the first reports which appeared in 1906. The two series 
meet and cross between 1920 and 1925. Accidents involving horses and horse-drawn 
carriages peaked during the period 1866 to 1869 (when the French territory was the same as it 
is today)7. Given an average of 1 356 deaths per year for each of these four years for a 
population of 38 million, the comparable number would be about 2 212 deaths today: the 19th 

                                                 
6 Figure 7. B shows how easy it is to compare two samples of individual drivers, the first taken at random and 
the second taken from those convicted of some Highway Code violation and to show that such convictions are 
good predictors of the relative risk of having an accident in the following period. 
7 In Figures 2, 5 and 6, the territory of 1854-1859 excludes Nice, Savoie and Haute-Savoie, and that of 1906-
1913 excludes Alsace and Lorraine. 
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Century includes numerous years for which stagecoaches killed more than 1 000 persons8 in 
France. 

 

Figure 2. Road deaths caused by horses, horse-drawn carriages and automobiles, France, 1854-
1938 
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2.2. Horsedrawn carriages, automobiles and the birth of aggregate 
modeling 
 
Statistics on road accidents and deaths evolved incrementally during the first half of the 20th 
Century. But it was only in 1949 that Smeed tried to explain sets of large numbers that fit 
Gaussian distributions better than Poisson distributions, at least in the sense that a Gaussian 
hypothesis on the distribution of errors in a model9 of national aggregate statistics seemed 
reasonable. Let us examine these statistics, notably for reliability. 

2.2.1. Road statistics specific to the 20th Century 
In 1953, France improved existing road accident statistics with additional data, compiled from 
police reports of accidents causing bodily harm (called BAAC). This was undertaken by the 
S.E.T.R.A (Service d’Études Techniques des Routes et Autoroutes), a division of the 
Transportation Department. At the time, a number of industrialized countries did the same, 
though some Eastern European countries considered that statistics on road accidents, collected 
by the military, needed to be kept secret.  

2.2.2. Errors of observation and sample variance 
Conventional statistics do influence the data on the total number of people killed on roads 
because they only take into account either the number of persons killed on the spot or those 
deceased within a certain period following the accident. In France, this delay period varied 

                                                 
8 Starting in 1901, tramway accidents are included. 
9 His working hypothesis referred to errors in the log-linear regression he specified.  
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from 1 day (1950-52) to 3 days (1953-66)10, to 6 days (1967-2004) and 30 to days since 2005, 
in accordance with the international norm. The numbers pertaining to Metropolitan France 
used for Figure 3 were standardized in accordance with this 30-day norm. 
 
The impact of such reporting rules on the variance of any series for France-wide fatalities 
(e.g. on monthly values used in some models) is not very well known, but is probably small. 
The statistics on the number of persons injured are generally less reliable11 than those on 
persons killed. Nonetheless, given that they have been compiled systematically as time series, 
they provide information that can be correlated with explanatory variables and used in 
modeling as long as the main observational errors become part the regression error or are 
proportional to the real values.  
 
When comparing data provided by insurance companies with national statistics compiled 
from police reports, one notices that both carry some error: typically, the number of deaths is 
relatively accurate and the number of injuries is under-estimated, but not in all countries: in 
Algeria for example (Himouri, 2008), the national statistics are reliable if the Sidi Bel Abbes 
Register, showing that the number of injuries reported by police is slightly overestimated, is 
representative of all 48 wilayas. Similarly, statistics on injuries in Quebec are also sufficiently 
reliable for modeling despite the fact that the no-fault insurance system, in place since March 
1978, induces some moral hazard for injuries declared ex post to the Insurance Board 
(RAAQ) but not reported to the police, and no doubt even for accidents that are so reported on 
the spot. 
 
In cases of exact proportionality between real values and observed values, the elasticity 
calculated for the models of these aggregates will not be affected, but the regression 
coefficients will be in direct proportion to the rate of coverage. Student’s t statistic (due to 
Gosset (1908) a hundred years ago) is not modified either if the error is strictly proportional. 
If, in a model of individual accidents, those are reported at random but the reporting system 
involves systematic under or over estimation of the average number by alternative, an 
explanatory logistic regression will have strictly unbiased coefficients, except for the 
constants (Manski & Lerman, 1977), but this property does not hold for Probit and other 
discrete choice models. The relationship between observation error on frequencies and 
statistical model performance is therefore a matter for case by case analysis where the 
analyst’s knowledge makes a difference. 
 

                                                 
10 In 1953, the ratio between the new and the previous measure was 1,2916 (=7166/5548); in 1967, it is 1,0700 
(=13585/12696) [another source uses 1,069976 but this has little impact on the variance]. From 1967 to 2004, 
the number of deaths after 6 days is translated into deaths after 30 days, using the ratio 1,057. The location of the 
maximum in 1972 is unaffected by these modest proportional adjustments. 
11 The Rhône Department Register in France (pop. 1,6 M) is a good example to use for comparison. The BAAC 
number of deaths is 99% accurate (Hoyau, 2004)) but underestimates injuries by 38% to 44% (Amoros et al., 
2005). Studies using this register (e.g. Amoros, 1995) have lead to revised estimates for the whole country 
(Amoros, 2007). There is no other French Department compiling similar statistics. In Algeria, the comparable 
Sidi Bel Abbes Register (for wilaya 22) allows the calculation of underestimated and overestimated rates for the 
country as a whole, as reported by Himouri (2008).  
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Figure 3. Killed, (30-day delay) on the road by motor vehicles, France, 1950-2011 
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2.2.3. A first aggregate model in 1949 
When Smeed studied the total number of persons killed annually on national road systems, he 
noticed a marked difference among countries, even though all in principle compiled the same 
information. These differences still persist, even if we take into account the distance driven 
and look at the annual number of deaths per vehicle-km, as shown in the most recent figures 
found in Table 2.A.  
 
It could be added that countries like Nigeria and India currently have even higher rates than 
the highest ones for the countries listed in Table 2.A12 (from ITF/OCDE/JTRC, 2008, Table 
A.3). To get a feel for the extraordinary nature of the difference among rates and for their 
marked evolutions over time, note that the Algerian rate shown in Table 2.B (from Himouri & 
Gaudry, 2008), which has been divided by 3 since 1970, now stands at approximately 85 but 
needs to be further divided by about 10 if it is to reach the same level as that for Sweden. 
 
To better understand this phenomenon, Smeed designed a very simple model in which he 
related the number of deaths per vehicle to the number of vehicles per person, expressed as 
equation S-1 to S-3 in Table 3 (extracted from Gaudry & Gelgoot, 2002). The coefficients 
stated for this equation are drawn from S-4, based on a first sample of 20 countries for the 
year 1938. In S-5, Smeed included 17 of the previous 20 countries studied, but his sample 
itself pertained to a longer period of time. Equation S-6 pooled yearly values for 26 countries 
over a number of years. 
 

                                                 
12 Vietnam, population 85M, had 12 000 deaths on roads in 2006 and 10 397 in 2008. Since 2005, fatalities are 
falling in China and Russia but still increasing in Brazil and India. 
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Table 2. Number of casualties per billion car-km and by network, 22 countries, 1970-2005 
 

A. 21 countries Killed per billion vehicle-km  
 1970 1980 1990 2000 2005  

Australia 49.3   9.3 7.9  
Austria 109 56.2 27.9 13.2 9.3  
Belgium 105 50.0 28.1 16.3 11.5  
Canada    9.5 9.2  
Check Republic  53.9 48.3 37 25.6  
Denmark 51 25.0 17.3 10.7 7.7  
Finland  20.6 16.3 8.5 7.3  
France 90 43.6 25.7 15.1 9.6  
Germany  37.3 20.0 11.3 7.8  
Great Britain 37 21.9 12.7 7.3 6.4  
Iceland  21.1 13.5 16.0   
Ireland  28.4 19.2    
Japan 96 29.3 23.2 13.4 10.3  
Korea    49.5 18.3  
Netherlands  26.7 14.2 8.5   
New Zealand    12.4 10.3  
Norway  19.3 12.0 10.5 6.1  
Slovenia 167 96.1 65.1 26.7 16.6  
Sweden 35 16.4 12.0 8.5 5.9  
Switzerland 56.5 30.9 18.5 10.4 6.6  
United States of 29.7 20.9 12.9 9.5 9.0   

 

B. Killed per billion vehicle-km, per month, Algeria, January 1970-December 2002 
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Figure 4 presents Smeed’s own data, along with similar data from 26 countries, extracted 
from the MAYNARD-DRAG data base (Gaudry et al., 2002). It is immediately obvious that 
the relationship found in the 1938 data set tends to gradually level off: Smeed’s S-4 model 
forecasts a greater number of deaths than those recently observed in these highly motorized 
countries. As the value of R2 shows, as one passes from S-5 to S-6, his adjustment much 
worsens over time. 
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Table 3. Smeed’s own regression using his data and applied to a broader sample 
 Theoretical and estimated equation Period n R2 
S-1 (Killed/Vehicles) =  k (Vehicles / Population) – 2/3 
S-2 (Killed) = k (Vehicles) 1/3 / (Population) – 2/3 
S-3 (Killed) = k (Vehicles) 1/3  (Population)  2/3 

n.a. 

S-4 Ln (Killed) = Ln (k) + 0,333 Ln (Vehicles) + 0,667 Ln (Population)  
               (n.c.)                           (n.c.) 1938 20  

S-5 Ln (Killed) = Ln (k)  + 0,408 Ln (Vehicles) + 0,699 Ln (Population) 
            (16,31)                        (20,41) 1938-1946 (*) 210 0,98 

S-6 Ln (Killed) = Ln (k) – 0,058 Ln (Vehicles) + 1,100 Ln (Population) 
            (-3,36)                         (55,92) 1965-1998 918 0,88 

where:  Ln denotes the natural logarithm; the values in parentheses are Student’s t statistics; n.c. ≡ not computed; 
              the S-5 sample is Smeed’s (1949); S-6 is from MAYNARD-DRAG (Gaudry et al., 2002). 

Portugal Finland South Africa Canada Australia U. S. A.
Ireland Norway New Zealand Italy Netherlands Switzerland 

(*) The 17 countries of 
 S-4 comprised in S-5 are: 

Northern Ireland Sweden Denmark United Kingdom France  
 
Some of the problems associated with pooling data from different countries can be avoided by 
limiting the analysis to only one country while still obtaining large changes in relevant 
variables. In France, for instance, the total number of private cars on the roads, measured on 
the first of the year, has increased every single year, between 1950 and 2007, from 1 525 
million to 30 400 million (a multiplication by 20), as the population increased at a yearly rate 
of only  4.7% (from 1949 to the middle of 2006). 
 
In this spirit, Page (1997, 2001) reexamined the multinational data using a broader sample of 
countries and seven variables instead of two. And, like Smeed, he used a logarithmic 
mathematical form for all variables, but found that the regression errors were not, in fact, 
stable. To dodge the problem, he ignored the presence of first order autocorrelation of the 
residuals altogether and made no attempt at obtaining a stationary relationship from first or 
higher orders of autocorrelation or under different forms of the variables. 
 
It is difficult to pool comparable time series from many countries because of the 
unavailability of many of the desired factors on a consistently measured basis. This explains 
why, in spite of the influence of Smeed’s fundamental multinational work on the subject, the 
greatest advances in aggregate modeling will be in fact be achieved with models developed at 
the national level rather than with pools of national data sets. 
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Figure 4. The evolution of Smeed’s relationship over time 
(Killed per 10 000 motor vehicles vs number of vehicles per 1 000 inhabitants) 

 
4.A. Smeed’s own data, year 1938 
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4.B. MAYNARD-DRAG data, year 1965 
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4.C. MAYNARD-DRAG data, year 1970 
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4.D. MAYNARD-DRAG data, year 1980 
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4.E. MAYNARD-DRAG data, year 1990 
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4.F. MAYNARD-DRAG data, year 1998 
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2.3. The two branches of modeling: individual and aggregate 
 
We can summarize the two branches of multi-factorial modeling that originated with Smeed 
and Weber by two stylized equations. First, the discrete models focus mostly on frequency, 
independently of concerns about the severity of accidents; the aggregate models focus almost 
exclusively on the number of deaths. Thus we have: 
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(0-1)     [Probability of accident] ← p (various factors; Poisson error) 
 
(0-2)   [Number of deaths] ← f (various factors; Gaussian error) 
 
The failure to give an adequate representation of the frequency of accidents by severity 
category will linger right up to the present and is still very pervasive, save for a few 
occasional improvements where a breakdown by category is found, and this only in certain 
aggregate studies. Of course, treating the frequency of accidents of all severity levels as a 
homogeneous measure amounts to a simplistic demand system where substitutions among 
severity categories is excluded from the beginning or relegated to the study of their 
conditional severity (the severity measured after accidents have occurred). The first researcher 
to explain the frequency of three categories of crashes with as many distinct equations was 
Peltzman (1975) who built an annual multiplicative model with 6 factors explaining the 
number of deaths, of injuries and of accidents with material damage (all per unit of total 
distance driven), his barely adequate sample covering only 18 years for the Unites States.  

2.4. Trends, long and hard to understand, in 155 years of annual data 
The full challenge facing modeling, whether aggregate or not, goes far beyond simply trying 
to explain variations in levels of victims over such surprisingly short periods of time. The 
modeling challenge is to explain why certain indicators have sometimes followed the same 
trend over very long periods of time. One of these indicators is the number of deaths per 
kilometer driven. The reduction of this number, at least as important as the reduction in the 
absolute number of road fatalities, is obvious in Table 2, but it is also true when applied to 
much longer periods. 

2.4.1. You can’t stop progress 
The truth is that, even if we cannot rely fully on the accuracy of the estimates of average 
annual distance covered per person and transportation mode13 compiled by Grübler (1990) for 
metropolitan France from 1800 to 1990 − they indicate a multiplication by 500 of average 
road distance over 150 years (Part 3, Figure 27) −, it is clear that the present annual toll of 
somewhat less than 4 000 deaths in France implies an improvement of more than an order of 
magnitude in the actual road fatality rate per person and kilometer since the war of 1870. 
Even the peak number of 18 713 deaths (30-day delay) reached in 1972 (Figure 3) was a vast 
improvement over the era of the stagecoaches.  
 
We find similar improvements for other modes of transportation, such as railroads. The data 
presented in Figure 5 indicate an important reduction in the number of deaths per traveler-
kilometer, using again Grübler’s estimates of distance traveled by mode. Interestingly, the 
comparison between Figure 2 and Figure 5 reveals that in 1925 the number of deaths 
registered for each mode of transportation, (i.e. train, horse, stagecoach and car) was the 
same, about 900. 
 

                                                 
13 From 100 meters per day on horseback in 1850 to 50 km per day by car or bus in 2000. 
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2.4.2. Differentiated impacts of accidents on categories of population 
Accidents are not distributed evenly over the population. In France for instance, as in many 
other industrialized countries, two thirds of fatal accidents occur on secondary roads, not on 
major highways. The drivers found in large cities rarely use back roads where very high rates 
are observed. But other seemingly hard facts, such as the proportion of women among road 
victims (see Figure 6), also beg for explanation: this proportion varies over time, as it does by 
mode of transportation, but it always remains much lower than 25% of all accidental deaths 
before 1938. 
 
If this proportion ever reached 50%, it would no longer contribute to the increasing difference 
in life expectancies between men and women, a growing source of inequality between the 
sexes since the 19th Century. It is interesting to note that the maximum level of accidental 
deaths involving women coincides with the moment when all three modes of transportation 
have the same value. This occurs around 1925, but their ranking remains more or less the 
same over time: cars always take the bigger share of casualties, followed by horses and, much 
lower on the scale, by trains (save for a very short time period at the turn of the 20th Century). 
 

Figure 5. Casualties caused by automobiles and by trains, France, 1866-1938 
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Figure 6. Proportion of women among casualties, by mode, France, 1866-1938 
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2.4.3. A Turn of the Century assessment: from the dung engine to the gas 
engine 
The transition from horses to horsepower in the 19th Century removed a major source of 
accidents in the cities. In fact, not only were horses much more dangerous than cars are today, 
they created all sorts of other problems. Called “dung engines” for obvious reasons, hackneys 
polluted much more than cars14. Heaps of dung littering the streets of cities (from 6 to 12 kilos 
per horse every day, corresponding to an average annual consumption of 1.2 tons of cereal 
and 2.2 tons of hay15) ― became the locus of flies, which spread disease like typhoid fever 
and infantile diarrhea. They were also a major source of methane gas. In addition, each horse 
sprayed about a liter of urine every day on the streets. Horses were also noisy (their shoes 
hitting the cobblestones) and their cadavers were difficult to dispose of – they had to be 
picked up and brought to a dump16. The gas engine and the cars have thus saved us from the 
pollution generated by horses, whose untenable ecological footprint, moreover, hindered the 
growth of the economy.  

3. A public health approach: knowing how but not why 
How can one make sense of such secular trends? The seminal Bortkiewicz-Weber and Smeed 
single-outcome formulations gave rise to a pair of parallel streams of explanations of road 
accidents, distinct to this day, that share a “public health” epidemiological emphasis on the 
establishment of multiple correlations giving rise to testable corrective policy intervention 
hypotheses. 
 
Both of these modeling traditions effectively aim at understanding something of the evolution 
of nation-wide totals and accept in practice (i) that successful intervention does not require 
understanding why improvements have resulted from policy actions taken (ii) and that 
changes occurring in the absence of any action might never be made sense of. Let us consider 
examples of both stands. 

3.1. Acting effectively without understanding why it works 

3.1.1. Vaccination saves lives 
There exists practical knowledge of how without theoretical knowledge of why. Consequently, 
it is possible to intervene without understanding why the chosen action produces the desired 
effect. A good example of this is the smallpox vaccination whose efficacy was systematically 
established by Edward Jenner, starting17 in 1796. The practice of vaccination was so 
obviously effective that Jenner convinced the British Parliament to make smallpox 
                                                 
14 Morris (2007) compares casualty rates involving hackneys in cities a hundred years ago to the present’s rates 
involving cars. For New York, the rate in 1900 was 75% higher per citizen than in 2003; in Chicago, the casualty 
rate per vehicle was 16,9 times higher in 1916 than in 1997. 
15 For instance, an Orion, which is a French carthorse, consumes 2,5 tons of cereal, straw, fodder and granules 
per year. On average, a horse produces 8-20 kg of manure and 3-4 liters of urine per day. 
16 Morris (2007) estimated that in 1880 New York, the city had to get rid of 41 dead horses every day (15 000 
per year). Theses numbers are explained by the intensive use of the animals arising from their high ownership 
costs, roughly equal per year to their capital cost: in 1820, the life expectancy of horses pulling tramways was 
less than 2 years. Railway companies were the major owners of horses required for the terminal (access and 
egress) movements of goods at rail stations.  
17 We discount various inoculation practices attested by numerous individuals in Europe, or in some tribes (for 
instance Turkish), where the systematic approach to trials seems absent and devoid of observable influence on 
medical practice and local health treatises or laws. 
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vaccination compulsory. This happened in 1840, 44 years after Jenner’s initial work in which 
he had inoculated a boy with cowpox pus and thereby tested his simple hypothesis that a 
cowpox vaccine protected from the human variety of the pox disease, as he had noted on his 
own farm employees. Understanding of the mechanism behind the effects of vaccination 
came much later: Jenner’s practice on humans, which would no doubt be forbidden to-day18, 
was established intuitively over 44 years of empirical trials.  

3.1.2. Speed kills 
Similarly, some changes in road safety performance are illustrations of the same kind of 
linkage between observed variations in counts and their underlying determination. The 
clearest example may well be the relation between speed and fatalities. The posting and 
enforcement of speed limits on roads lowers the number of crash deaths, but there exists no 
standard account of the causal chain between the speed limit and the result. We do not 
understand the effect of factors such as a driver’s concentration, reflexes and other 
psychological variables that obviously play a role in determining the influence of speed limits 
on the frequency and severity of accidents. 
 
The case of the smallpox vaccine exemplifies David Hume’s opinion that our notion of 
causality stems from a “constant conjunction” between terms. More generally, established 
statistical correlations point to underlying mechanisms that might be brought into play despite 
the fact that they are fundamentally not understood and to a large extent random. In that 
manner, thousands of studies of all kinds have established that interventions limiting speed on 
roads have saved lives.  

3.1.3. Average “intrinsic dangerousness” by age and sex 
Similarly, the U-shaped relationship between age and accident risk per kilometer driven 
shown in Figure 7.A is a structural biological “average” the underlying reasons for which are 
barely understood. It is known however that some factors, such as certain medical conditions 
(which limit the issuing of driving permits) and driving experience, influence its shape 
somewhat. But strictly isolating the exact influence of age and sex from that of all other such 
factors would notably require understanding how driving experience shifts the curve (in either 
direction) according to the age and sex of the driver. Bolduc et al. (1993, 1994, 2012) have 
certainly identified factors that, by helping to distinguish between age and experience, help to 
pin down the strong biological U structure. 
 
Such U-shaped curves often describe the risk only as a function of age: see Malek & Hummer 
(1986, Figure 2) or Williams & Carsten (1989) for the United States and Johansson (1997, 
Figure 2) for Sweden. If and when distinct curves are drawn by sex, both tend to have the 
same risk of accident per kilometer driven in the middle years, as in Figure 7.A. Also, the left 
hand side of the women’s U curve is typically lower and more open than the men’s, but the 
two U cross around their respective minimum, e.g., for the United States (Evans, 1987, Figure 
4), France (Fontaine, 1988, Figure 6), Germany (Hautzinger & Tassaux, 1989, Figure 7.3) and 
the United Kingdom (TRRL, 1987, Figure 1). 
 
Figure 7.A summarizes in stylized manner not only those many international cases just 
mentioned but also a robust Canadian case (Grignon, 1988) where three U-shaped curves 

                                                 
18 Similarly, Louis Pasteur’s famous experiment on a young boy (a sample of one!) would have been outlawed, 
if only because he was not a doctor but a chemist. 



24 
 

were established by type of accident (fatal, injury and with material damage only)19. Figure 
7.A is therefore quite general a stylized representation of what is “expected” of a 20 year-old 
male driver or of an 80 year-old female driver. 

 
Figure 7. Relative risk of accident and intrinsic dangerousness, by age and sex 
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7.B. Relative accident frequency and the number of previous infractions 
B.1. Men with 1, 2-3 and 4+ infractions B.2. Women with 1, 2-3 and 4+ infractions 
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19 Each curve’s numerator includes accidents reported ― with a police or insurance company report ― for the 
whole population of Greater Montreal and the denominator includes trips per car where individual mileage is 
finely calculated by assignment of drivers to the road network. The latter data are taken from a regional Origin-
Destination study (CTCUM, 1983). It contains the relevant socio-economic characteristics, such as age and sex, 
the driver’s trips per hour, origin, destination and purpose. These data make it possible to assign all trips on 
realistic itineraries for a large metropolitan area (population over 3 million) and to calculate quite precisely their 
length. 

7.A. Stylized curves of the relative frequency of accidents per km at the wheel 
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3.1.4 Variability of “intrinsic dangerousness” within age‐sex group means 
The mean curve exhibited in Figure 7.A hides important differences between individuals 
belonging to any age-sex sub-group. Consequently, insurance premiums based on such group 
averages may be financially sound but are actually unfair to many individuals: who ever fits 
the average of his or her age-sex group? On the other hand, charging the same initial premium 
to all individuals irrespective of their sex or age (and of the averages of age and sex groups), 
and then adjusting the premium according to each individual’s observed driving record, will 
be expensive: to determine each person’s actual risk, the insurance company will have to wait 
for enough accidents to occur and for driving records to progressively reveal the relevant 
“intrinsic dangerousness” of each person, i.e. the individual’s own risk-proneness coefficient. 
 
Weber (1970, 1971) showed that, when calculated on the basis of past offenses, this 
coefficient was partially predictable; on the same lines, a recent German study based on the 
link between violations and accident frequency showed that violations of the Highway Code 
were associated with higher accident probabilities. But this German study showed much 
more. In fact, on this subject of relative danger within an age-sex group, the summary 
presentation by Krupp (2005) of the detailed background work by Schade & Heinzman 
(2004) first outlines a solid methodology based on three samples: first, a control group of 22 
000 German drivers chosen at random to help define the distribution of socio-economic 
characteristics; second, a group of 60 000 drivers taken from a central registry of traffic 
violators; and a third group, also composed of individuals whose names appear on the registry 
of traffic violations but who also have, in the ensuing 12 months, been found responsible for 
accidents. 
 
The results presented in Figure 7.B show (exposure being approximately taken into account 
by socio-economic groupings) that drivers listed in the traffic violation registry are very over 
represented among those having accidents in the next period: nothing added to Weber here. 
More surprisingly, this over-representation is not associated with any sex or age group but is 
definitely linked only to the number of traffic violations in the previous year. For all subjects 
(broken down in Figure 7.B), the relative frequency of accidents jumps from 1,00 (no traffic 
violation) to 2,15 (one traffic violation) and then successively to 3,52 (for 2), to 4,13 (for 3), 
to 4,42 (for 4) and to 5,87 for more than 4 traffic violations. Relative risk proneness seems 
independent from age or sex! Long buried under an excessive emphasis on “education”, 
where convincing results have yet to be produced, risk proneness may be ready for a 
comeback… 
 
The detailed results, shown in Figure 7.B (from Krupp, 2005), amazingly imply that the 
average U-shaped curves by sex of Figure 7.A can be broken down among sub-groups, each 
with its own U shifted vertically (in parallel manner). They do not imply any sort of 
modification of the shape of the age-sex risk curve based on the average number of violations. 
As a result, they tend to confirm the hypothesis of the intrinsic dangerousness or risk-taking 
propensity of certain sub-groups of individuals throughout their lives. The “intrinsic danger 
coefficient” varies from 1 to 6 within age-sex groups, a magnitude comparable to the 
variation in the average risk (from 1 to 6 or 7) throughout life. Combining these suggests that 
a classification by age, sex and relative dangerousness conditional on the means of the former 
variables could usefully distinguish between some 40 classes. 
 
Differences in intrinsic dangerousness play a role in recessions: in the recent dramatic 
collapse of U.S. road fatalities, which fell by 22% from 2005 to 2009, fatalities implying 
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drivers who had 2 or more previous accidents fell disproportionately (Sivak & Schoettle, 
2010) from 2005 until 2008 (the last year for which detailed data were available), about twice 
as much as accidents by drivers who had one or no previouos accidents. 

3.2. Neither acting nor understanding: the peaking of casualties in 1972
1973 
If modeling and effective intervention do not require a proper causal understanding of 
linkages, it may also be conversely true that ignorance of statistical linkages imposes inaction. 
A good example of this ignorance accompanied by a healthy and forced inactivity pertains to 
the turnaround in road death counts that took place in many advanced countries in 1972-1973 
(1972 for France, see Figure 3). If one understood the problem, some policy action might now 
be advisable to bring forward the peak in countries where it has not been reached yet (Nigeria, 
India, China, etc.). Inactivity may be the wisest course of action if we are too ignorant to 
make a proper diagnostic and even to ask the question correctly. This long standing ignorance 
of macro linkages and structures has historical roots. 
 
For instance, Oppe (1991) noticed a simultaneous peak in road deaths in 1972-1973 in 6 
countries (Japan, USA, Germany and Great Britain20, Israel and The Netherlands) and, with 
others, tried to mathematically reproduce the turning point, but only with descriptive 
statistical methods, as pointed out by Orselli (2004), thereby failing to provide a structural 
explanation for the maximum: adjusting a time function, exponential21 or not, logistic and 
symmetric or not, to data on distance driven or to severity rates (multiplying them), as in 
Oppe (1989) or Koornstra (1992), amounts to a description and fails to explain the 
phenomenon because no policy prescription arises from non structural equation curve fittings. 
The same objection applies in other contexts to the countless national autoregressive models, 
with or without “intervention” variables: their interest lies precisely only in their estimates of 
the ruptures caused by interventions (such as the imposition of compulsory seat belts, major 
modification of the Highway Code, and fines), namely in the structural variables; it does not 
lie in the self-explanatory lagged values of the dependent variable or in the mere function of 
time.  
 
Why then did the number of deaths peak in so many countries (much more than 5, clearly) at 
the same time in 1972 or 1973 (typically in the same month of August), when none of those 
countries implemented any significant policy intervention? And why22 did those very 
countries peak in 1972-1973 when the peak occurred in 1989 in Spain and in 1995 in Greece 
(see Table 4)? The 13 curves for the simultaneous national peaks strongly resemble the curve 
for France23 shown in Figure 3. 
                                                 
20 Oppe neglected both the higher post-war value in 1965 (8143) ― the value for 1972 is 8135 ― and the true 
maximum of 9168 in 1941. This sloppiness reduces his count to 5 countries. A less partial list is found in Table 
4. 
21 Orselli (2004) noted that a decreasing exponential function with a zero asymptote is “incompatible with the 
stagnating phenomenon of the reported number of casualties of the roads in developed countries”. 
22 Since this peak has yet to be understood, it is absurd to write: “Looking at the data from the last 25 years, it is 
clear that in most OECD countries, road safety policies have been very successful” (OECD, 1997). It remains 
unclear why cruising on an undiagnosed downward trend constitutes a success. 
23 Some politicians congratulated themselves for having taken measures others had not taken or had taken later. 
Such diagnostics attributing the benefits of the trend reversal to local measures, without demonstration, can 
easily be refuted. In France, for instance, the only measure taken before the turning point of 1972 concerned 
blood alcohol concentration (BAC), a measure introduced in October 1970. All other measures were introduced 
later: speed limits (from June 1973 to November 1974), safety belts and helmets (from June 1973 to September 
1979). As there was no significant measure adopted by any of the 6 countries studied by Oppe for the 1972-1973 
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To better understand how significant this trend reversal was, let us look in Figure 8 at 4 
important variables aggregated over the 12 countries listed with italicized names in bold in 
Table 4. Included in this group of 12 are Spain and Great Britain despite the fact that their 
own peaks occur outside of the 1972-1973 period. Spanish fatalities peaked 17 years after 
those of the remaining 10 countries; identifying a peak for Great Britain is less 
straightforward because, forgetting the true maximum (of more than 9,000) of 1941, the 1972 
count of 8,135 deaths is almost equal to the 8,143 count reported for 1965. Removing Spain 
and Great Britain from this group of 12 would increase the steepness of the curve of fatalities 
without changing the location of its robust peak. 
 
Note in passing that the October 1973 OPEC crisis did not have a significant impact on 
distance driven in these 12 countries, except for a slight change in its rate of increase. On the 
other hand, whereas the number of casualties dropped significantly after 1972, the number of 
persons injured fell less fast. In a proper model, both the peak and the change in the mix of 
fatalities and injuries would be explained. It is fair to say that we are still far from an 
explanation of this major structural feature of road safety performance and that, as we shall 
see in Part 3, this glorious ignorance will not help understanding the current situation of a 
possible reversal of the 30-year downward trend in many countries. How could a minimum be 
made sense of if an obvious maximum is still not understood, if it is acknowledged at all? 
 

Table 4. Year of the highest number of road fatalities in 30 countries 
Year of maximum N Country 

1965-1966 2 Great Britain, Sweden 
1969 1 Czech Republic 
1970 4 Luxemburg, Japan, Norway, Australia 
1971 2 Switzerland, Denmark 

1972 10 Israël, Austria. Belgium, France, Finland, West Germany, Ireland, 
Italy, The Netherlands, United States of America 

1973 2 Canada, New Zealand 
1975; 1978 ; 1979 1 +(1/2) Portugal, Iceland; East Germany (before reunification); Slovenia 
1989 3  Spain 
1990 1 Hungary 
1991 1+(1/2) Poland, Korea, East Germany (after reunification) 
1995 1 Greece 

 
On this point, the manuscript from which Table 4 and Figure 8 are drawn (Gaudry & Gelgoot, 
2002) suggests that one of the variables that could explain the simultaneous national peaks of 
fatalities in 1972-1973 could be the car occupancy rate. The occupancy rate is of course the 
inverse of the explanatory variable cars per capita shown on the x-axes of Figure 4 pertaining 
to data for Smeed’s model24. The other plausible causes, such as the average quality of drivers 
(due to baby boom induced changes in the age-sex mix) or the modal split (also linked to the 

                                                                                                                                                         
period, France is an exception among 12 the countries counting for Figure 8. Thus, French editorials (e.g. Got et 
al, 2007) linking the 1972 peak to the introduction of speed limits and compulsory seat belts are gratuitously 
wrong: the French BAC policies were implemented in October 1970 and could not reasonably have caused the 
August 1972 turning point. 
24 In a conversation at The University of Montreal at the beginning of the in 1970s, Smeed told one of the 
current authors that he could not explain the soundness of his results. We do not wish to impose on his results a 
car occupancy rate interpretation, but it is clear that this rate is the mathematical inverse of the explanatory 
variable he picked for his successful simple model. 
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youth bulge) must be discarded for the same reason for which Adams (1985) discarded 
technical improvements. 
 

Figure 8. GDP per capita and road indicators, from 1965 to1998: pooling of 12 countries 
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Taking notice of an upward trend break in car sales (starting in 1970) in a number of 
countries, presumably caused by the arrival on the market of the baby boomers, the same 
manuscript further suggests that the very important demographic change of the youth wave 
(bulge) might be working primarily through the vehicle occupancy rate. We shall come back 
to this issue in Part 3 because it is fundamental to forecasting national and world road safety 
performances. 
 
We can safely assume that this demographic wave had an enormous influence on the 
campuses of universities in 1967-1968, on road accidents in 1972-1973 and on job markets 
starting around 1974-1976. In North America25, the real average hourly wage has remained 
more or less constant over the last 35 years, since 1975. In econometric models, major 
demographic changes cannot be adequately handled simply by the introduction of regulation 
shifts or of variables that displace the level of dependent variables but cannot explain their 
turning points. The demographic dimension of many economic models is severely inadequate, 
and not only in the explanation of road accidents. 
 
Some have started to examine the issue more closely. In reaction to above mentioned 
manuscript on the “mystery of 1972-1973”, Stipdonk (2007) analyzed Dutch statistics over a 
period of 55 years (1950-2005). He described the evolution of all possible combinations of 
fatal road accident crashes among pedestrians, two-wheelers, cars, trucks, etc. in the hope of 
making sense of the Cervin-like shape of the 1972 peak for his country. By contrast, Kopits & 
Cropper (2008) explain part of the decrease in numbers of persons killed since 1963 in 32 
countries by the lower number of pedestrians killed, a relevant fact for France (see Figure 14 

                                                 
25 The 1974 break in France’s unemployment rate is often attributed to Brussels’ free market policies 
implemented in 1974 (Allais, 1999). But this break happened also in Canada and in the United States, two 
countries that had a baby boom maximum at roughly the same time as France did (two or 3 years after the end of 
WW II). The demographic wave seems the most relevant variable to explain the trend breaks in both 
employment and people killed on the roads. 
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in Part 2), but they fail to address the 1972-1973 turnaround, or even to see it as a turning 
point. 
 
The dearth of analysis on the single most important feature of road safety since 1950, namely 
the “mystery of 1972-1973” concerning the turning point in fatalities, leads us to look briefly 
at the number of injuries (persons injured) despite their noted lack of homogeneity across 
countries (even for the IRTAD countries26 applying the same 30-day delay for the reporting of 
fatalities). Figure 9, for one, seems to indicate that the ratio of injured to killed has been 
declining in France since 1978 (or 1979 depending on the source), irrespective of the severity 
of the injury. In a system of close substitutes documented further in Part 2, one would not 
expect a clear maximum in one component (fatalities) to be without implications for the other 
(injuries). 
 
Generally speaking, it is simpler to explain a sudden shift (upwards or downwards) in 
accident trends or in categories of victims of accidents associated with say the implementation 
of a new law than to explain the trend itself. It is also more difficult to explain a turnaround 
such as the one that took place in 1972-1973 in so many countries simultaneously than to 
explain variations about a trend. In many countries, the number of casualties currently shows 
signs of leveling off, if not of increasing again27. This raises an important question: is the 
downward trend coming to and end, and if so, why? Is a minimum approaching in many of 
the same countries? 
 

Figure 9. Injured per killed, France, 1965-1998 or 1967-1993 
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As we see, the discussion on applying a public health approach to road accident policy 
requires acting upon correlations, simple and multiple, between safety performance indicators 
and presumed causes: it leads into and requires formal modeling beyond that provided by the 
founders’ single-outcome formulations. But what is involved in doing better that the 
                                                 
26 In French: BICAR (Base de données Internationale sur la Circulation et les Accidents de la Route). In Figure 
9, the 1965-1998 data are from IRTAD and the 1967-1993 data from Jaeger (1997). 
27 In the USA, fatalities, which fell steadily for 20 years after the peak of 1972, started climbing again in 1993 
but suddenly fell rapidly by 27% between 2005 and 2010. For the years where detailed data are available (2005 
until 2008), disproportionate drops (Sivak & Schoettle, 2010) in peak AM and PM fatalities, in accidents with 2 
or more fatalities, in accidents of the less than 25 years of age and in accidents for those with 2 or more previous 
accidents over the period suggest an extremely severe recession creating unemployment in lower economic 
groups, notably among the young. A sudden return to the trend would imply an increase of 11 000 fatalities per 
year. 
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Bortkiewicz-Weber and Smeed approaches? The difficulties raised by models need some 
introduction. 

3.4. References 
Adams, J., 1985. Smeed’s Law, Seat Belts, and the Emperor’s New Clothes. In: Evans, L., Schwing R. 

C. (Eds.), Human Behavior and Traffic Safety, New York, Plenum Press, pp. 193-257.  

Allais, M., 1999. La destruction des emplois. Débats et opinions. Le Figaro, p. 15, 7 décembre.  

Amoros, E., 1995. Contribution à une meilleure connaissance des déterminants de l’insécurité 
routière en Rhône-Alpes. Mémoire pour l’obtention du Diplôme de Statisticien Mention Bio 
statistique, Université Pierre et Marie Curie.  

Amoros, E., 2007. Les blessés par accidents de la route : estimation de leur nombre et de leur gravité 
lésionnelle, France, 1996-2004; Modélisation à partir d’un registre médical (Rhône) et des 
données policières (France). Thèse d’épidémiologie; Université Lyon 1.  

Amoros, E., Martin, J-L., Laumon, B., 2005. Registre des victimes d’accidents de la circulation: 
extrapolation au niveau national, Rapport UMRESTTE no 0509, 58 p., Institut national de 
recherche sur les transports et leur sécurité, Octobre.  

Bolduc, D., Bonin, S., Lee-Gosselin, M., 1993. Un outil méthodologique désagrégé pour l’évaluation 
de politiques en sécurité routière. Rapport de recherche Groupe de Recherche Interdisciplinaire 
Mobilité Et Sécurité (GRIMES), Université Laval, Québec, 47 p., décembre. 

Bolduc, D., Bonin, S., Lee-Gosselin, M., 1994. Un outil méthodologique désagrégé pour l’évaluation 
de politiques en sécurité routière. Cahier 9407, Groupe de Recherche en Économie de l’Énergie 
et des Ressources Naturelles (GREEN), Département d’économique, Université Laval, Québec, 
59 p., avril. 

Bortkiewicz, L. von, 1898. Das Gesetz der Kleinen Zahlen, Leipzig, Teubner. 

Bouthoul, G., 1970. L’Infanticide Différé, Hachette, Paris.  

Boyer, M., Dionne, G., Vanasse, C., 1988. Infractions au code de sécurité routière, infractions au 
code criminel et accidents automobiles. Publication CRT-583, Centre de recherche sur les 
transports, Université de Montréal, 85 p., juillet. 

Brace, C., Whelan, M., Clark, B., Oxley, J., 2009. The relationship between crime and road safety. 
Report No. 284, Monash University Accident Research Centre, 76 p. January. 

Chesnais, J.-C.,1974. La mortalité par accidents en France depuis 1826, Population 29, 6, 1097-1136. 

CTCUM, Commission de transport de la communauté urbaine de Montréal (1983). Mobilité des 
personnes dans la région de Montréal, Enquête Origine-Destination régionale exécutée à 
l’automne 1982. 141 p., Service de l’aménagement du réseau, décembre. 

Duclos, C., 1759. Essais sur les ponts et les chaussées, la voirie et les corvées, Chatelain, Amsterdam, 
278 pages.  

Evans, L., 1987. Fatal and Severe Crash Involvement Versus Driver Age and Sex. Paper presented at 
the Annual Meeting of the American Association for Automotive Medicine, New Orleans, 22 
p., September. 

Fontaine, H., 1988. Usage de l’automobile et risque d’accident. Recherche Transports Sécurité 20, pp. 
5-12, décembre. 

Gaudry, M., Gelgoot, S., 2002. The International Mystery of Peaking Yearly Road Fatalities in 1972-
1973 : From Smeed to DRAG-Type Multinational and Multiprovincial Models MNP-1 and 
MPM-1. Publication AJD-8 (Manuscript Version 2), Agora Jules Dupuit, Université de 
Montréal, 52 pages. www.e-ajd.net. 

http://www.e-ajd.net/


31 
 

Gaudry, M., Clément, A., Gelgoot. S., Noury, Y., Weiske, A., 2002. MAYNARD-DRAG, Version 3.0: 
Merged Aggregate Yearly National Accident and Road Data for DRAG-type Research, 
Publication AJD-7, Agora Jules Dupuit, Université de Montréal, 443 p., May. www.e-ajd.net. 

Gauss, C. F., 1823. Theoria Conbinationis Observationum Erroribus Minimis Obnoxiae, Göttingen, 
Dieterich.  

Gosset, W. S. [“Student”], 1908. The probable error of a mean. Biometrica 6, (1), pp. 1-25. 

Got, C., Delhomme, P., Lassarre, S., 2007. Éditorial : La mortalité routière en France peut encore 
reculer. Population et Sociétés 434, pp. 1-4.  

Grignon, J., 1988. Répartition des conducteurs selon l’âge et les accidents au Québec. Mémoire de 
Maîtrise, Département de sciences économiques, Université de Montréal.  

Grübler, A., 1990. The Rise and Decline of Infrastructures. Dynamics of Evolution and Technological 
Change in Transport, Physica-Verlag, Heidelberg.  

Hautzinger, H., Tassaux, B., 1989. Verkehrsmobilität und Unfallrisiko in der Bundesrepublik 
Deutschland – Egebnisbericht. Institut für angewandte Verkehrs- und Tourismusforschung e.V., 
Heilbronn, Bericht zum Forschungsprojekt 8303 der Bundesanstalt für Straßenwesen, Bereich 
Unfallforschung, Bergisch Gladbach, im März. 

Heinsohn, G., 2003. Söhne und Weltmacht: Terror im Aufstieg und Fall der Nationen (Sons and 
Imperial Power: Terror and the Rise and Fall of Nations), Zurich. http://opac.suub.uni-
bremen.de/.  

Heinsohn, G., 2008. Exploding population, International Herald Tribune, Saturday, January 19. 
http://www.iht.com/.  

Himouri, S., 2008. Note sur la sous déclaration et la qualité des données de la sécurité routière en 
Algérie, 13 p. 7 juin. 

Himouri, S., Gaudry, M., 2008. DRAG-Algérie : Évolution de la base de données. Publication AJD-
122, Agora Jules Dupuit, Université de Montréal, 16 p. 

Hoyau, P-A., 2004. Les tués de la route. Récits INRETS, http://recits.inrets.fr/article13.html .  

ITF/OCDE/JTRC, 2008a. Towards Zero Road Deaths: Ambitious Targets and a Safe System 
Approach. Working Group on Ambitious Road Safety Targets Final Report, 193 p., February. 

ITF/OCDE/JTRC, 2008b. Country Reports on Road Safety Data and Performance. Working Group on 
Ambitious Road Safety Targets, sous presse, 439 p. 

Jaeger, L., 1997. L’évaluation du risque dans le système des transports routiers par le développement 
du modèle TAG. Thèse de Doctorat de Sciences Économiques, Faculté des Sciences 
Économiques et de Gestion, Université Louis Pasteur, Strasbourg.  

Johansson, K., 1997. Traffic Safety in an Aging Society. In: Holst, H. von, Nygren, Å., Thord, R., 
(Eds), Transportation Traffic Safety and Health, The New Mobility, pp. 115-133, Springer 
Verlag.  

Kopits, E., Cropper, M., 2008. Why Have Traffic Fatalities Declined in Industrialised Countries? 
Journal of Transport Economics and Policy 42, (1), pp. 129-154. 

Koornstra, M. J., 1992. The Evolution of Road Safety and Mobility. IATSS Research 16, (2), pp. 129-
148. 

Krupp, R., 2005. Improving Road Safety by Optimising Automotive Insurance System. Paper 
presented at the 1st Forum of European Road Safety Research Institutes (FERSI) Scientific Road 
Safety Research Conference, Bundesanstalt für Strassenwesen, Bergisch Gladbach, 11 p. 
September. 

http://www.e-ajd.net/
http://opac.suub.uni-bremen.de/
http://opac.suub.uni-bremen.de/
http://www.iht.com/
http://recits.inrets.fr/article13.html


32 
 

Maleck, T.I., Hummer, J. E., 1986. Driver Age and Highway Safety. Transportation Research Record 
1059, pp. 6-16.  

Manski, C. F., Lerman, S. R., 1977. The Estimation of Choice Probabilities from Choice Based 
Samples. Econometrica 45, pp. 1977-1988.  

Morris, E., 2007. From Horse to Horse Power. Access 30, pp. 2-9, University of California 
Transportation Center, Spring. http://www.uctc.net/access/  

OECD Road Transport Research, 1997. Road Safety Principles and Models: Review of Descriptive, 
Predictive, Risk and Accident Consequence Models. OCDE/GD (97) 153, 105 p. Paris.  

Oppe, S., 1989. Macroscopic models for traffic and traffic safety. Accident analysis and Prevention 
21, (3), pp. 225-232. 

Oppe, S., 1991. The development of traffic and traffic safety in six developed countries. Accident 
Analysis and Prevention 23, (5), pp. 401-412.  

Orselli, J., 2004. L’évolution de la sécurité routière en France de 1954 à 2003. 21 p., Manuscrit 
présenté le 28 janvier au Congrès international de l’ATEC, Issy-les-Moulineaux. 

Page, Y., 1997. La mortalité routière dans les pays de l’OCDE, Les Cahiers de l’Observatoire 3, pp. 
67-122, Observatoire National Interministériel de Sécurité Routière, La Documentation 
Française, Paris, Juillet.  

Page, Y., 2001. A statistical model to compare road mortality in OECD countries. Accident Analysis 
and Prevention 33, pp. 371-385.  

Peltzman, S., 1975. The effects of automobile safety regulation. Journal of Political Economy 83, 4, 
677-725. 

Poisson, S. D., 1837. Recherches sur la Probabilité des Jugements en Matière Criminelle et en 
Matière Civile, Précédées des Règles Générales du Calcul des Probabilités, éditions Bachelier.  

Preece, D. A., Ross, G. J. S., Kirby, P. J., 1988. Bortkewitsch's Horse-Kicks and the Generalised 
Linear Model, The Statistician 37, 3, 313-318.  

Schade, F.-D., Heinzmann, H.-J., 2004. Prognosemöglichkeiten zur Wirkung von 
Verkehrssicherheitsmaßnahmen anhand des Verkehrszentralregisters (VZR). Research Report, 
Bundesanstalt für Straßenwesen (BASt), Bergisch Gladbach, Report, 127 p. 

Sivak, M., Schoettle, B., 2010. Towards understanding the recent large reductions in U.S. road 
fatalities. Report UMTRI-2010-12, University of Michigan Transport Research Institute, 26 p., 
May. 

Skegg, D. C. G., Richards, S. M., Doll, R., 1979. Minor Tranquillizers and Accidents. British Medical 
Journal 1, 917-919.  

Smeed, R. J., 1949. Some statistical aspects of road safety research. Journal of the Royal Statistical 
Society Series A, Part I, 1-34. Royal Statistical Society, London.  

Stipdonk, H., 2007. The story of the Matterhorn: 55 year of traffic safety in the Netherlands. 
Presentation made at the Second Workshop of the NERDS-RSVP research network, Institut 
National de Recherche sur les Transports et leur Sécurité, Arcueil, 30-31 mai. http://nerds-
rsvp.inrets.fr/index.html.  

TRRL, 1987. Car drivers’ accident risk per kilometre in 1985. TRRL Leaflet 1061, September. 

Weber, D. C., 1970. A Stochastic Model for Automobile Accident Experience. Mimeograph Series No. 
651, Institute of Statistics, North Carolina State University at Raleigh. 

Weber, D. C., 1971. Accident Rate Potential: An Application of Multiple Regression Analysis of a 
Poisson Process. Journal of the American Statistical Association 66:334, 285-288. 

http://www.uctc.net/access/
http://nerds-rsvp.inrets.fr/index.html
http://nerds-rsvp.inrets.fr/index.html


33 
 

WHO [World Health Organization], World Bank and Harvard University, 1996. Global Burden of 
Disease.  

WHO [World Health Organization], 1999. The World Health Report 1999: Making a Difference, 
Geneva. 

WHO [World Health Organization], 2004. The World Report on Road Traffic Injury Prevention. 

Williams, A. F., Carsten, O., 1989. Drive Age and Crash Involvement. American Journal of Public 
Health 79, pp. 326-327. 



34 
 

Part 2. Beyond singleoutcome models: decompositions of 
aggregate and disaggregate road safety risk 

4. Seven difficulties that modelers have to face 
Before presenting a summary of models by type (aggregate, disaggregate) in sections 5 and 6, 
it is useful to discuss the problems generally raised by models, independently from the type of 
data used and notwithstanding the comparative advantages of each type. The problems pertain 
to key dimensions and dictate the nature of the explanations derivable from any model. 
 
In his review of the literature on this topic, Page (1997, 2001) states that the formulation of 
the DRAG-1 model (Gaudry, 1984 in French and 2002 in English) played a pivotal role in the 
evolution of road safety performance models. Many other studies on the methodology of road 
safety analysis, such as the OECD (1997), COST 329 (1999), Reurings & Commandeur 
(2007) and Antoniu et al. (2007), opine with Page. 
 
Page’s statements sought primarily to emphasize the new perspective embodied in the DRAG 
approach, independently from the aggregate or discrete nature of the data at hand ― actually 
aggregate in his extension of Smeed’s (1949) multinational work, as discussed in Part 1 of 
this survey. It is therefore useful to isolate the four innovative dimensions that particularly 
interested him and the other commentators from any other key dimensions of models, three of 
which will be addressed here. 

4.1. Four new issues: decomposition and endogeneity, correlation and 
substitutability 
To simplify a little, road safety performance models (notably aggregate) were formulated 
before 1984 as simple relations linking, as in Equation (0-2) of Part 1, the number of victims 
(killed and occasionally injured) to various factors inserted in linear or logarithmic form in the 
regression, in accordance with the following basic scheme: 
 
(1) Victims ← (Road Demand, Other factors) [Performance risk]
 
To summarize, DRAG-1 substituted to this direct explanation of the single-level number of 
road victims (usually casualties) by fixed form regression a multi-level system formulation 
(with sub-categories) that included simultaneous relationships among endogenous variables of 
the system, all explained by regression equations with mathematical forms of the variables 
decided by data rather than a priori by the analyst. Consider these changes in turn. 

4.1.1. Decomposing outcomes among risk dimensions 
The first innovation was to decompose any loss L in (1) into a product of exposure E, 
frequency F and gravity G dimensions, as expressed by the following tautology: 
 
(2) Loss L = E•F•G [Loss Performance]
 
which, applied to road victims VI, and more generally to material damages if the data are 
available, may be rewritten: 
 
(3) Victims VI = DR•A•G. [Damage Performance]
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If one then explains the individual components DR, A and G of this identity by exogenous and 
endogenous variables, respectively X and Y, with relevant sub-sets X

d
, X

a
, X

g
 and X

y
, one can 

formulate the following relationships:  
 
(4) Road demand (veh.-km) DR ← (     , Y , X

dr
) [Exposure risk]

 
(5) Accidents (per veh.-km) A ← ( DR , Y , X

a ) [Frequency risk]
 
(6) Gravity (victims/accident) G ← ( DR , Y , X

g ) [Severity risk]
 
where Y, the vector of endogenous factors, also constitutes a specific level of the model and, 
for the formulation at hand, might for instance explain the choice of speed, safety belt, 
insurance system or blood alcohol concentration. In principle, these endogenous factors can 
also be explained as part of the model formulation, say with their own layer: 
 
(7) Driving behavior Y ← (            , X

y ). [Behavioral risk]
 
This first structural innovation allows for the impact of any variable Xk on exposure, 
frequency or gravity (severity) to be measured separately with equations (4) to (6), instead of 
limiting the study to that of its net impact on victims in accordance with equation (1). But this 
gain in understanding requires the formulation of equations for each level, a breakdown long 
known to insurance companies distinguishing among these three risks by name. 
Correspondingly, certain consumer self-protection expenses aim specifically at reducing the 
frequency of accidents while other expenses, called self-insurance measures, aim at reductions 
the severity of accidents, should those happen: there exists a literature on their estimation, 
often trying to find indirect measurements of the value of human life and limb revealed by 
self-protection and self-insurance purchases. 
 
The implicit bet of such a breakdown of outcome risk among specific equations is that each 
type of risk component behaves in a distinct manner. Such differences may pertain to the size 
and direction of effects; they may also involve variations in the forms of relationships 
between explanatory factors and their effects, as discussed below in section 4.1.3. 

4.1.2. Endogeneity structure and specific cases of simultaneity 
Let us examine the short term behavior of a household and organize the relationships of 
interest among the likely endogenous variables, i.e. those explained within the system for 
which hypothetical equations must be formulated for the particular hypothetical case 
considered. For one, the level of household “motorization” [ Mi ], i.e. the number of cars and 
their technical and safety features, is assumed exogenous even if it becomes endogenous on a 
medium-term basis. Which relationships are then worthy of further explicitation? 
 
One might think that, for individual i, the key short term variables [ DRi , OCCi ], standing 
for road demand and for the car occupancy rate, depend upon a complex demand for mobility 
and supply of driving within the household (or, for freight, within firms) and that households 
(or firms), when deciding on the level of exposure, consider at least the expected risk of 
accident and of its severity [ Ai , Gi ]*, as shown on line 1 of Table 5, along with many other 
factors that naturally include exogenous motorization [ Mi ] in this case.  
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Similarly, driver behavior [ CCi ] depends on perceived accident frequency and severity risks 
[ Ai , Gi ]*, as described on line 4 of Table 5, and on other factors that the driver has 
supposedly taken into account in the decision to move other people or goods more or less far, 
namely in the determination and setting of [ DRi , OCCi ]. 
 
On the road, the demand [ DRi , OCCi ] and the driver’s behavioral vector [ CCi ] imply an 
actual frequency and severity risk [ Ai , Gi ] that, as seen in line 2-3, depends on factors other 
than the system’s assumed endogenous variables. In this hypothetical system, the endogenous 
variables, both explanatory and explained, form a 3x3 matrix where each one depends on the 
others, in addition to being dependent upon external factors. The resulting simultaneous 
system formulation will heavily influence the interpretation of the results of the individual 
equations, as we presently explicate. 
 
Let us for instance imagine that “other factors“ in lines 2-3 and 4 include some characteristics 
of the road such as its tracé, geometry, surface and signage. If driving behavior [ CCi ], 
explained (determined) in line 4 and explanatory in lines 2-3, turns out to be statistically 
significant in lines 2-3, it should be remembered that the road characteristics are then 
significant there given (in addition to) their contribution to risk adjustment [ CCi ] where 
they already play a role (in line 4): the presence of residual statistical significance in lines 2-3 
implies that the objective risk of accident determined in lines 2-3 is not entirely explained by 
its assessment (how it has been taken into account) reflected in behavioral decision [ CCi ], as 
drivers might involuntarily over or under compensate with respect to their desired (target) 
risk. 
 Table 5. Simultaneous structure of a short-term four-level individual model 

 Dependent  Endogenous explanatory Exogenous explanatory Risk component 

1 [ DRi , OCCi ] ← f d,o {           [ CCi ] ; [ Ai , Gi ]*;  [ Other factors ]i 
d, o } exposure: kilometers 

and occupation rate

2-3 [ Ai , Gi ] ← f a,g { [ DRi , OCCi ] ; [ CCi ]    ; [Other factors]i 
a, g } accident frequency 

and severity

4 [ CCi ] ← f cc { [DRi , OCCi ] ; [ Ai , Gi ]*; [Other factors]i 
cc } driving behavior 

(care)

 
Since the relationships are simultaneous, it does not make sense to over-simplify the results of 
the equations formulated in lines 2-3 by statements such as “the design or the geometry of this 
particular road have such and such an effect on accident frequency and severity”. One should 
say instead: “after taking into account their role in line 4, road characteristics still have ― 
how surprising! ― a residual effect on accidents and on their severity in 2-3”. 
 
By assumption here, the statistical results obtained28 suggest that the objective risk explained 
in lines 2-3 is in fact different from the anticipated risk, because the number of accidents and 
their severity still depend upon road conditions even after their specific risks have been 
considered and driving behavior [ CCi ] adjusted: one finds that drivers do not merely have 
their anticipated level of accidents but a different one that depends on their (correct or 
incorrect) interpretation (reading) of the road characteristics. Road design and signage 
therefore indicate (in 2-3) a number of accidents and a severity greater or smaller than the 
number and severity anticipated (or “demanded”) by drivers when they decided (in 4) on a 
certain level of risk taking. 

                                                 
28 For more details, see Gaudry (2006). 
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In consequence, many regression models relating accidents to a particular feature of road 
design show weak or unanticipated results in formulations of type 2-3 estimated without the 
behavioral adjustment term [ CCi ]: such relationships are not structural but reduced form 
equations. A recent representative example is the multi-country study of the effect of rut on 
accidents (Ihs et al., 2011) where it is found that “There are no results showing that deeper 
ruts tend to increase accident risk generally. Nor are there results that show that ruts have the 
same influence on the risk for different Average Annual Daly Traffic (AADT) classes at a 
given speed, or vice versa.” Our point is that, in a context of simultaneity, the effect of ruts 
should be appreciated as residual effects ― that can go either way and be significant or not 
depending on the drivers’ reading of rutted surfaces ― in the presence of a [ CCi ] term. In 
this case, drivers apparently take proper account of ruts in all countries studied, so there is no 
residual effect to speak of. This does not mean that [ CCi ] was not adjusted, quite the 
contrary, and should not have been used in the accident rate equations! 
 
A similar problem can occur if one of the equations of line 4 determines the type of insurance 
bought or the use of alcohol. Assume that a new law requires lowering blood alcohol levels 
and that drivers have taken it into account, in [ CCi ], when deciding to drive. As the 
implementation of new laws is normally represented by a Boolean variable included in “other 
factors” of lines 2-3, its meaning becomes: “after the adjustment in [ CCi ], the residual 
impact of the new law is…”. The reason for this is that the impact of the new law measured in 
lines 2-3 does not correspond to its total impact which first “indirectly” goes through [ CCi ]: 
the “direct” effect in 2-3 is ― no matter its algebraic sign ―, merely a residual effect to be 
considered over and above that which has passed through [ CCi ]. 
 
The simultaneous nature of some endogenous variables is normally taken into account in 
accordance with the context and the availability of data. For example, it is extremely rare to 
have information on driving speeds29, which, in principle, are a part of [ CCi ]. In their 
absence, one or more Xk variables included in “other factors” in 2-3 ― for instance the price 
of fuel― will partly play their role and produce a combined “net” effect. In the United States 
of America, for instance, the price of gas changes often because States impose their own tax 
on top of the Federal tax and the former frequently changes with local elections30. This 
situation has led to a number of research studies on the effect of the price of gas on accidents 
(Grabowski & Morissey, 2004, 2006) by reduced forms (speeds are not observed). 
 
In that sense, every formulation, such as that for DRAG-1 summarized in Table 6, is 
contextual. The formulation illustrated in that table, which reflects the short term nature of 
monthly data, is truly simultaneous ― but it does not include speed as a variable of the three 
equations estimated for [ CC ]: this set only includes alcohol sales, the number of driving 
licenses issued and the size of the car stock. 
 
The innovation here consisted in defining and structuring the problem as a four-tier system of 
simultaneous equations, in spite of the fact that the estimated form of the system was 
recursive and that the equations were estimated one at a time. However, the recursivity shown 
in Table 6 was in fact a result: tests had shown that, with aggregate monthly data, the risk of 
accidents has no effect on road demand: [ A ] and [ G ] are without influence on [ DR ]. This 
result, hardly surprising given the aggregate nature of the data, would have been more 
surprising had individual data been used instead. 
                                                 
29 Certain segments of highways are equipped with speed measuring devices, but they are few and localized. 
30 More so than in France, where the Taxe intérieure sur les produits pétroliers (TIPP) allows for regional gas 
tax supplements since 2007 ― but a strict maximum allowable add-on is set for all regions. American States and 
Canadian Provinces are free to set their own fuel tax on top of the Federal one. 
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Table 6. Simultaneous structure and recursivity of explained endogenous variables in DRAG-1 
Recursive sequence determination 

for endogenous variables 
Endogenous and exogenous 

explanatory variables 
 3 ← ← 2 ← 1   

Sets of endogenous variables 
simultaneously determined below: 
{ OCC , DR , A , G , CC , V } 

Demand for mobility  
and supply of car 

driving 

 

←[.................... , M ,..................... ] 

 

  ▼ ▼  (DCAR)   
 ▼ Vehicle occupation rate ←[...................., DCAR , ................ ]  
 ▼    (OCC)    
 ▼ Demand for road use ←[( −−, −−−−), −−−, FACTORS]  
 ▼     (DR)                                             (X1)  

Accident frequency ←[(DR, OCC),  CC  , FACTORS]  
(A)                                              (X2)  

Accident severity ←[(DR, OCC),  CC  , FACTORS]  VI ≡  

(G)                                              (X3)  
 Driving behavior (care) ←[......., OCC, .................................]  
 (CC)     
 Realized speed ←[ DR,  −−−  ,   CC  , I , ...............]  
 (V)                               
        ▲       ▲ Infrastruct. services ←[....................................................]  
        ▲                ▲ (I)   

where the variable that are not defined in the text are:
 
 

   CC ≡ 
 

⎡V*  ≡  Desired speed (distinct from realized speed V) 
⎜B    ≡  Safety belt wearing 
⎣C    ≡  Competence ← (Quality (Age/Sex), Vigilance, Ebriety, Insurance régime, Other) 

  DCAR ≡   
Demand for car trips in households, combined with the supply of driving, it determines a road 
use demand and an occupation rate of vehicles included in vectors DR and OCC, which may 
contain other similar elements pertaining to freight. 

4.1.3. Flexible functional forms and statistical correlations 
Another innovation consisted in substituting to predetermined forms in regression, where 
variables typically appeared in linear or logarithmic form, Box-Cox transformations (BCT) 
applicable to all strictly positive31 variables Varv: 
 

(8) Varv
(λ) ≡

(Varv )λ −1
λ

, if ≠ 0,

ln(Varv ) , if → 0.

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

 
                                                 
31 It is also possible to apply them to variables that contain some null values. For a detailed discussion with 
transport examples, see Gaudry & Quinet (2010). 



39 
 

The BCT as such was not a novelty in 1984, as implied by the later observation by the 
renowned economists Davidson & McKinnon (1993) that it was the most common non-linear 
transformation used in econometrics because it includes the linear ( 1λ = ) and logarithmic 
( 0λ = ) forms of variables. It was, however, bold to use it in a system of nine equations 
designed to show in particular that the various risk components were each subject to a 
differentiated and specific explanation. 
 
A price to be paid for such general use of the BCT was to express all results in elasticity 
form32 because the kβ coefficients of variables, already difficult to interpret intuitively in a 
linear regression where units of measurement are easily forgotten, lose all obvious meaning 
when each variable is raised to a power. In the particular case of logarithmic regressions, the 
coefficients of a variable found in equations (4), (5) and (6) sum to the coefficient of the same 
variable found in (1), because the applied breakdown is a product. But, if the risk component 
relationships (4) to (6) are not logarithmic and all variables are subjected to BCT, the 
breakdown improves our understanding much further but the coefficients have lost any 
intuitive meaning and do not add up anymore to those of (1): without elasticities, one is lost. 
 
The use of transformations has even more profound consequences than best fits and due 
curvatures determined by the data, rather than a priori, because they modify correlations 
among variables and in particular their covariances: hence, BCT affect the existence, size and 
sign of the kβ  coefficients that define and establish the statistical correlations. Another 
consequence lies in the link between intuition and statistical correlation. Intuition, local and 
bivariate, is valid if the model is truly y X= α + β , i.e. if it has a quasi-linear, monotonic and 
symmetric form. But the real model is in fact ( ) ( ) ( )( , )y j k

j ky f X Xλ λ λ= , where variables are 
transformed according to (8), and can even be non-monotonic and asymmetric for several 
effects. The problem for our intuition is both that the real correlation is multivariate and that 
the variable-specific transformations are of unknown forms.  
 
One could say that using Box-Cox transformations has epistemological consequences in as 
much as it deepens David Hume’s view concerning the origins of our sense of causality 
(referred to in Part 1) by showing that it was implicitly made in an intuitive, approximately 
linear (and monotonic), space when in fact, correlation should be established by an optimal 
form exercise driven by the data, because form and statistical correlation can only be 
established together. We may also add that our intuition about accidents is a global one and 
that it deals with the frequency of accidents but seldom with their severity. Who indeed says: 
“this variable has a positive effect on the frequency of minor accidents, a negative effect on 
the frequency of serious ones but no effect on the frequency of average severity accidents”? 
 
The model goes further than intuition. The combination of functional form tests (to obtain 
sound statistical correlations that are not conditional on a priori form) and of results 
expressed as elasticities (essential if they are to be understood and made sense of) constitutes, 
for any econometric model, a double-blade Ockham’s razor. It will be noted below that 
aggregate models are here somewhat in the lead over disaggregate models which generally 
use predetermined mathematical forms and often fail to express all their results as elasticities. 
“Statistically significant” results can imply silly elasticities, and quite often do. 

                                                 
32 Hence, a 10-page section of Dagenais et al. (1987) devoted to the theory and measurement of elasticities, 
including for dummy variables. These developments made it possible to produce tables of results where the 
elasticities of all variables were systematically calculated in addition to the regression coefficients. 
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4.1.4. Sub‐categories within demand system layers: substitution, 
complementarity 
The fourth innovation is the systematic use of sub-categories within the frequency, severity 
and road demand layers of the model’s central structure framed in Table 6. Whereas the basic 
distinction between frequency and severity matched the language of insurance, breaking down 
each by subcategory met the language of epidemiology where morbidity and mortality are 
classical descriptive categories. 
 
And if DR, A and G are indeed vectors and not scalars, one can detect some substitution or 
complementarity among all elements, as in complete demand systems. If, as previously 
mentioned, Peltzman (1975) had been the first to explain a vector of losses, he had not studied 
his three equations to detect substitution among outcomes, as is common practice in 
economics; nor had he distinguished between the frequency and severity dimensions of his 
three totals33. 
 
In fact, combining insurance and epidemiology categories allows for the search for 
substitutions (or complementarities) not only within levels of frequency and severity but also 
among all sub-categories. This is a difficult task, partly because there are many possible 
outcomes. The resulting system of levels (of say fatal, injury and material loss accidents) by 
severity category (e.g. the mortality of fatal accidents, the morbidity of injury accidents and 
the loss per material damage only accident) is comparable to consumer behavior systems but 
far more difficult to model, understand and interpret than consumption good demand systems. 
 
These new substitution/complementarity structures are complex but interesting. It now 
becomes possible to say: “factor X10 increases the total number of accidents, which is good 
news because total fatalities decrease”. Similarly, saying that “ cigarette smoking, or using a 
cellular phone while driving, increases the number of accidents” is of little interest unless we 
know more about the severity of these accidents: do smokers drive more slowly, and if so, do 
they happen to have more accidents, but less serious ones? Intuitive judgments on or about 
“accidents” that do not take severity into account become uninteresting and should be 
avoided.  
 
There is no doubt that the behavior of drivers is the result of complex and sophisticated daily 
choices, but that should not be a deterrent to researchers who can no longer limit their 
analyses of accidents to the number of persons killed. For instance, we can now try to 
understand the impact of a decrease in the number of deaths on the number of seriously 
injured victims. The substitution between persons killed and persons seriously injured raises 
important questions, not the least of which is the life-saving practice of organ donation. Let us 
examine Figures 10 to 12 on the subject of death ratios (on a constant delay period basis) for 
France. 
 
In 2005, these ratios changed as a result of the automatic implementation of the 30-day delay 
period for fatalities, mechanically increasing fatality counts, and because the number of 
seriously injured drivers also increased following a reporting change in the length of hospital 
stays (from at least 6 days to at least 24 hours); for minor injuries, the count included stays of 
24 hours or less (including cases of no stay in hospital).  

                                                 
33 The impact of automobile safety regulations would then probably have been identified more convincingly, had 
he done so, for one expects self-protection and self-insurance expenditures imposed by governments safety 
regulations to modify the baskets of demanded outcomes. 
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This delay period is a significant change in reporting: Figure 10 shows that the ratio of 
persons killed in France since 2005 will automatically decrease only if the larger numerator is 
proportionally smaller than the denominator. But a sudden ”accounting” increase in the ratio 
is compatible with the trend illustrated in Figure 10. The matter requires complementary work 
with hospital admission series. As already clear in Figure 9, the maximum of fatalities in 1972 
does not correspond to the maximum of severe injuries per fatality, in 1978-1979; and in 
Figure 10 the fall in the latter ratio is noticeable. 
 

Figure 10. Seriously injured per killed, victim France, 1967-1993 (Jaeger, 1997) 
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Figure 11. Slightly injured per killed victim, France, 1967-1993 (Jaeger, 1997) 
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These figures seem to indicate that that the number of seriously injured victims decreases at a 
faster rate than the number of persons killed. But further analysis can sometimes shows 
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otherwise: a Dutch study covering 22 years (Kampen, 2007) discovered that, among seriously 
injured persons, 8% were uninjured patients kept 24 hours under observation, and 14% were 
patients with superficial injuries34. The researcher’s attention was attracted by a ratio that 
seemed to decrease too slowly. Such an analysis typically shifts the level of a variable but 
does not necessarily change its maximum or trend. Given that the number of slightly injured 
victims has been decreasing since 1978 or 1979 (see Figure 11), and given that the number of 
seriously injured has been decreasing faster than the slightly injured (see ratio in Figure 12), it 
is possible that the average severity of injury accidents is decreasing. But is the trend in 
denominator true? To answer sophisticated questions, one needs both good data and 
sophisticated models. 
 

Figure 12. Seriously injured per slightly injured victim, France, 1967-1993 (Jaeger, 1997) 
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4.2. Other model issues: multivariateness, temporality, data and 
aggregation 

4.2.1. PIMCYÂ multivariateness 
Given that every accident by definition implies a driver, a car and a road, it is often said that 
researchers should concentrate on these 3 pillars of road safety performance modeling. But 
there is a fourth dimension that models must effectively take account because of its 
significance: the economic one. The first 3 “constitutive” dimensions of road safety 
performance, namely cars M, roads or infrastructures I and drivers C, result from a classic 
microeconomic distinction; but the fourth, activities A, is also fundamental. There are two 
kinds of economic variables: first, the activities Â that determine “the sea level35” concomitant 
with each accident involving (by definition of the transport system) some particular values of 
M, I and C; second, the set of relevant prices P. In addition to these [ P , Â ], one typically 
distinguishes between drivers’ characteristics linked to competence from socio-economic 
ones, like income or education level, and one writes [ C , Y ] instead of [ C ]. 
 

                                                 
34 In the Rhône Department of France, studies make it possible to put these numbers in perspective. 
35 Given that the demand for transport is derived from economic activity, the inherent risk is also derived from 
economic activity. But defining this inherent risk is no easy task. 



43 
 

The variables of interest to road safety performance thus belong to the following 6 categories: 
 

P: Prices (of gasoline, insurance and maintenance, of competitive modes of transportation 
and fines if they are excluded from [ I ]); 

I: Infrastructure (road design and layout, road foundation and surface, road signs, traffic 
management, law enforcement and weather conditions);  

M: Motor vehicles (number, characteristics, condition, weight and nature of load);  
C: Characteristics that influence the competence of drivers (age, sex, medical 

conditions, fatigue and blood alcohol levels, types of car insurance) and more generally, 
the drivers’ behavior at the wheel [ CC ]); 

Y: Drivers’socio-economic characteristics (income, profession, marital status, cultural 
and religious factors and the overall characteristics of a population);  

Â: Economic Activities (levels, make-up36 by sector and trip purposes).  
 

In order to construct the appropriate set [ P , I , M , C, Y , Â ] for a given environment, the 
variables must be chosen and made consistent. Harmonizing variables means modeling them, 
a practice defined by European scientific committees such as SpotlightsTN for transport (see 
Gaudry et al, 2002), which developed the common SPQR standard for both data modeling 
and modeling of data.  

 
Listing all these variables would be too long a task. They vary from the menstrual cycles of 
women (Liskey, 1972)37 to macroeconomic cycles, including life cycles38 that play a decisive 
role in exposure to risk, amongst many others criteria such as left-handedness (Coren & 
Halpern, 1991). One could try to list the variables by order of importance, a task never really 
done well in spite of some worthwhile efforts (e.g. Evans, 1990), and which deserves further 
work. One could also try to clarify and determine the importance of questions such as the left-
handed drivers’ or the smokers’ propensity for accidents (Brison, 1987), or women’s periods 
or pregnancies (Gaudry, 1984, Table 9.9; Fridstrøm, 1997, Tables 6.1.2 and 6.4; Fridstrøm 
1999, Table 6.6 and Figure 6.10) and even contraceptive pills (Gaudry, 1984, Conjecture 7 
and Table 11).  

4.2.2. Temporality  
Another tautology, considered interesting by some, is the Haddon Matrix (Haddon, 1968). It 
has three lines defining the periods before, during and after an accident, in the same way 
Indo-European languages are grammatically structured with past, present and future tenses. 
The four columns are assigned successively to the potential victim (or host), to the kind of 
energy causing damages to the victim, to the physical and the socio-economic environments. 
But a classification is not an explanation. Naturally, temporality varies with each variable. 
One does not buy a car every day. This is where the time horizon defines statistical 
endogeneity, particularly when safety equipment sales are involved as well as the turnover of 
the car pool. 

4.2.3. The nature of the data and aggregation 
We have stressed the differences and natural divide between data that can be analyzed by 
Poisson and by Gaussian methods. But there is an in-between case: that of data made of 
counts. In the field of applied econometric statistics, space-time aggregation is still in its early 
stage. Its development has relied mainly on macroeconomic series that are, by definition, 
                                                 
36 Trip purposes and the nature of the goods transported have distinctive effects. 
37 In a letter to one of the authors, Liskey said that he excluded from his sample women taking contraceptive 
pills. 
38 Including working irregular shifts (Liddell, 1982). 
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aggregates. What this really means is that the cube that combines aggregation levels (discrete, 
count, aggregate), time factors (cross-section, time series, pooling) and space factors (difficult 
to define) may be composed of even more empty cells than the Haddon Matrix.  

5. Aggregate models: organizing the literature 
How are we to organize the literature that followed Smeed’s work? First, we must exclude the 
plethora of simple “before & after” tests39 and the Box & Jenkins (1970) type of self-
explanatory generalizations, with or without the addition of Boolean variables that represent 
“interventions”40 (Box & Tsiao, 1975). We indeed insist on the growing multivariate41 nature 
of models, because we believe that today’s researchers have gone well beyond the cross-table 
stage, except occasionally for exploratory purposes or for presentation. It must be made clear 
that we limit ourselves here, and in the following section on individual data models, to 
estimation procedures that model quantitatively42, and with multiple factors, the 
relationships43 among road infrastructure, traffic, accidents, drivers and the economy. 

5.1 Models of one type of damage in one region 
A first classification, consistent with Page’s (1997, 2001) ideas expressed above, maintains 
the DRAG-1 border of 1984 but uses it to classify models only by the number of accident 
categories explained, neglecting the number of explanatory variables or the use of flexible 
Box-Cox-type forms44. This approach yields Table 7 for one-equation models and Table 8 for 
models explaining several types of damages. 
 

Table 7. Models of one type of damage in a region or country up to 1984 
 VI, A, G DR P I M C Y Â βk n λy , λx ρ1 
1 Crète, 1982 MA*/AUTO  2 2 1  5 1 11 33 λ = 1 - 
2 Maag et al.,1982 Killed /Pop. 1   2    3 30 λ = 0 - 
3 Partyka, 1983 Killed   1    4 5 22 λ = 1 - 
4 Stein & Beauregard, 1983 Killed 1 1 1    2 5 26 λ = 1 - 
5 Crandall & Graham, 1984 Killed 1  2 4  2 1 10 35 λ = 0 - 
6 Crandall & Graham, 1984 Killed /mile  1 3 3  2 1 10 35 λ = 1 - 
7 Hoxie et al., 1984 Killed 1   1  2 2 6 72 ∆**λ = 0 ρ1 
  * Insurance claims per automobile insured for accidents involving material damage only. 
** Difference of logarithms. 

  
All models listed in Table 7, with the exception of the seventh and the last, are estimated with 
annual data rather than monthly data. The linear form (

1
,..., 1

Ky X Xλ = λ λ = ) is used instead of 
the logarithmic form 

1
,..., 0

Ky X Xλ = λ λ = ) in a short majority of models. In addition, the 
models listed use a relatively high number of variables about motor vehicles [ M ] and 
economic activity [ Â ]. 
 

                                                 
39 Often found when new regulations, such as speed limits (NHTSA, 1988; Baum et al., 1988), are implemented. 
40 Also used to study the impact of changes in legislation on speed, as found in France (Page, 1993). 
41 Building fixed form mathematical models, such as those of Gould et al. (2004) for aggregates in the 
Netherlands, with 2 or 3 equations and a maximum of 3 or 4 variables, is, we believe, pointless. 
42 Which is not the case of computer programs, such as CONCERTO which includes the ACCTOS (Ceausu-
Dragos, 2007) and SAARA (Bentebibek & Despres, 2006) modules that do not model quantitatively the 
relationships of interest. 
43 As a rule, models do not use time as explanatory variable even if tests of its residual contribution as a measure 
of missing variables are carried out. But the use of simple or multiple autocorrelation turns formally static 
models into dynamic ones by introducing lagged values of all variables (Spanos, 1987-1988). 
44 BCT give a local approximation of form. Fourier transforms would provide a less local fit. 
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5.2 Models of multiple types of damages in one region 
To better understand Table 8, it is preferable that equations be explicitly written using 
continuous parameters whose specific values serve to help classify the models as special cases 
of the general specification. The required three-component regression model, where the BCT 
applied to variables y, Zm or Xk, is defined in (8) for each observation t: 
 

(9.1)  Xy k( )( )
t k kt tk

y X uλλ = β ⋅ +∑ , 

(9.2)  ( )m
1/2

( )z
t m mt tm

u exp Z vλ⎡ ⎤= δ •⎢ ⎥⎣ ⎦∑ , 

(9.3)  t t tv v w−= ρ +∑ l ll
. 

 

In this formulation, the regression error tu can be subjected to corrections for 
heteroskedasticity and autocorrelation in order to obtain spherically distributed final errors wt: 
sphericity parameters appear in the last column of Table 7 and in the last two columns of 
Tables 8 and 9. For researchers, formulation (9.3) is straightforward, as is nowadays the BCT 
regression (9.1), a generalization of Ordinary Least Squares, but formulation (9.2) is less 
known. It describes the way in which the variance of the residual ut can be expressed as a 
complex function of some variables Zmt that can also be Xk variables, in which case these 
determine both the level of yt in (9.1) and the variance of residual ut in (9.2) The latter has the 
advantage of including classic heteroskedasticity as a special case obtained by setting all 

0
mZλ =  and all 0mδ = save one, set at 2. This particular mδ  is found in the last column of 

Table 8.  
 
The models of the DRAG family are typically estimated using one version or the other of the 
LEVEL-1 algorithm, notably L-1.4 (Liem et al., 1993). It allows for the simultaneous 
estimation of all parameters of an equation specified as (9-1)-(9.3), for the formulation of the 
results as elasticities (for common variables and “dummies”) as well as for the restitution of 
the calculated values of the yt as expected values of yt, E(yt). The latter measure of fit is 
necessary when a BCT has been applied to a dependent variable, because the measure of 
adjustment we are interested in refers to the observed variable, not to its transformed values. 
 
Of all the models listed in Table 8, the TAG-1 model for France (Jaeger, 1997) and the 
DRAG-ALZ-1 model for Algeria, have the advantage of including a measure of average 
speed on high-level roads of the transportation network45 that, in the case of France46, is used 
to explain the frequency and severity of accidents for country as a whole. The model most 
tried and tested is the model for Quebec, continuously updated by the SAAQ (Société de 
l’assurance automobile du Québec) from 1999 to 2003. The DRAG-2 version (Fournier & 
Simard, 1997; Gaudry et al., 1993-1995) already included reversed U-shaped forms47 applied 
to total car mileage (a representation of the unobserved underlying traffic congestion). The 
subsequent version (effectively DRAG-3) includes reversed U-shaped asymmetrical curves, 
which help predict traffic congestion on a given month (Fournier & Simard, 1999, 2000). 

 

                                                 
45 Sometimes, data are available for regions or states, as in Loeb’s (1988) work on the 1979 rural intercity 
highways of the United States. 
46 For Algeria, the speed series does not cover enough of the network to be used in the explanation of national 
accident totals or in the explanation of their severity. 
47 Applied to car mileage inserted twice in the regression, once in linear form and once in transformed form 
according to (8). The Box-Cox value determines if the U is symmetrical as a standard quadratic ( 2λ = ) or if the 
shape of the U form is asymmetrical ( 2λ ≠ ). 
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Table 8. Models of multiple damages in a region or country since 1975 
Regression Model Explained 

occurrences 
Region/country 

considered Sample Form Residuals 

of :  Damages Severity [Name of a DRAG 
family model] Xk t(1) (λy),(λx) 

 

 ρ δm 

Peltzman 
(1975) 

Killed 1, 
Killed 2 
Injured 
Material acc. 

 United States of America 6 18y λy = λx = 0 no = 0 = 0 

Gaudry 
(1984) λy ≠ λx no 

(1993) 

Killed 
Injured 
Material acc. 

Mortality 
Morbidity 

Province of Quebec 
[DRAG-1] 44 313m 

λy ≠ λx 
≠ 0 ≠ 0 

Gaudry 
Blum 
(1993) 

Killed 
Injured 1 
Injured 2 
Material acc. 

Mortality 
Morbidity1 
Morbidity 2 

Western Germany 
[SNUS-1](2) 22 264m λy ≠ λx no ≠ 0 = 0 

Fournier 
Simard 
(1997) 

Killed 
Injured 
Material acc. 

Mortality 
Morbidity 

Province of Quebec 
[DRAG-2] 48 445m λy ≠ λx  ≠ 0 = 0 

Jaeger 
(1998) 

Killed 
Injured 1 
Injured 2 

Mortality 
Morbidity 

France 
[TAG-1](3) 20 456m λy ≠ λx no ≠ 0 = 0 

Fournier 
Simard 
(2000) 

Killed 
Injured 
Material acc. 

Mortality 
Morbidity 

Province of Quebec 
[DRAG-3] 48 445m λy ≠ λx  ≠ 0 = 0 

Tegnér 
et al. 
(2000) 

Killed 
Injured 1 
Injured 2 

Mortality 
Morbidity 1 
Morbidity 2 

County of Stockholm 
[DRAG-Stockholm-2] 33 312m λy ≠ λx  ≠ 0 = 0 

Tegnér 
(2004) 

Killed 
Injured 1 
Injured 2 

Mortality 
Morbidity 1 
Morbidity 2 

City of Stockholm 
[DRAG-Stockholm-3] 35 348m λy ≠ λx  ≠ 0 = 0 

McCarthy 
(2000) 

Killed 
Injured 
Material acc. 

Mortality 
Morbidity 

California highways 
[TRACS-CA](4) 12 96m λy ≠ λx  ≠ 0 ≠ 0 

Aparicio 
et al.  
(2009)(5) 

Killed 
Injured 
Material acc. 

Mortality 
Morbidity 

Non urban Spanish network
[I-DE](6) 21 180m λy ≠ λx no ≠ 0 = 0 

Gaudry 
Himouri 
(2011) 

Killed 
Injured 1 
Injured 2 

Mortality 
Morbidity 1 
Morbidity 2 

Algeria 
[DRAG-ALZ-1] 35 456m λy ≠ λx no ≠ 0 = 0 

 VI, A G  Number Monotonic U Sphericity 

1. Monthly ≡ m; yearly ≡ y; pooling of cross-sections and time series ≡ p. 
2. SNUS ≡ StrassenverkehrsNachfrage, Unfalle und ihre Schwere. 
3. TAG ≡ Transports routiers, Accidents et Gravité. 
4. TRACS-CA ≡ Traffic Risk And Crash Severity-CAlifornia. 
5. There exists an abridged version (2012), presenting only the results of the two equations for accidents with Victims. 
6. ID-E ≡ Intercity-DRAG España. 

 
For the majority of months, increased car use result in increased fatalities and increased 
severity of fatal accidents48 (increased mortality, i.e. increases in the number of persons killed 
per fatal accident). On the other hand, for some months, more cars on the road have no effect 
whatsoever on fatalities and on the mortality of fatal accidents. Finally, beyond this 
maximum, occurring more frequently over the years because car-kilometers increase but few 
new roads are built, the killed victims and the morbidity of fatal accidents (number of killed 
by event) decreases. Figure 25 shown in Part 3, will illustrate the fact that traffic congestion 
saves lives if drivers do not switch to two-wheel motorized vehicles. 

                                                 
48 Tests have shown that this did not apply to accidents with injuries or to their morbidity (persons injured by 
injury accident). 
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5.3. Multipleregion or multiplenetwork models, with or without pooling 
Sometimes, as in the case of the models listed in Table 9, the sample is created from 
observations over time on distinct regions of a country or on specific geographical subsets, 
such as urban vs non-urban. The first two models use only one cross section but all others use 
several, which we name “pooling”. We have not found models that explicitly spatialize 
origin-destination flows and corresponding accidents. 
 
Table 9. Models per region or per national type of network, with or without pooling, since 1949 

Regression Model Explained  
occurrences 

Region/country 
considered Sample Form Residuals 

of :  Damages Severity [Name of a DRAG
family model] Xk r t(1) (λy),(λx) 

 

 ρ δm 
Smeed 
(1949) Killed  20 countries 

in 1938 2 20 1y λy = λx= 0 no = 0 = 0 

Recht 
(1965) 

Killed/Veh-mi(2) 
Injured/insured 
Material/insured 

 45 American states 
in 1960 218 45 1y λy = λx= 1 no = 0 = 0 

Smeed 
(1968) Killed  68 countries 

1957-1966 2 68 10y λy = λx= 0 no = 0 = 0 
Page 
(1997) Killed  21 OCDE 

countries 7 21 15y λy = λx = 0 no = 0 = 0 
Fridstrøm 
(1999) 
(2000) 

Killed 
Injured 1 
Injured 2 

Mortality 
Morbidity 1 
Morbidity 2 

The 19 counties of 
Norway 

[TRULS-1](3) 
48 19 264m λy ≠ λx no ≠ 0 ≠ 0 

Bergel 
Girard 
(2000) 

Bodily injury 
accidents Killed 

France: 
-tolled highways 

-high network 
8 2 228m λy = 1  

 λx ≠ 1 
no ≠ 0 = 0 

Gaudry 
Gelgoot 
(2002) 

Killed 
Injured 

Mortality 
Morbidity 

12 countries 
and Quebec 
1965-1998 

15 13 35y λy ≠ λx yes ≠ 0 = 0 

Gaudry 
Gelgoot 
(2002) 

Killed 
Injured 

Mortality 
Morbidity 

10 Canadian 
provinces 
1965-1998 

15 10 35y λy ≠ λx yes ≠ 0 = 0 

Grabowski 
Morrisey 
(2004) 

Killed/Pop 
Killed/Mile  10 48 216m λy = 0  

 λx= 1 
no = 0 = 0 

Grabowski 
Morrisey 
(2004) 

Killed/Pop 
by 
age group 

 

All 51 American 
states except for 

Alaska, Hawaï and 
District of 
Columbia, 
1982-2000 

10 48 216m λy = λx= 1 
(Binomial) no = 0 = 0 

 VI, A G  Number Monotonic U Sphericity 

1. Monthly ≡ m; yearly ≡ y. 
2. Total per vehicle-mile and by category: pedestrians, persons involved in one-car crashes and in two-car crashes. 
3. TRULS ≡ TRafikk, ULykker og deres Skadegrad. 

 
This Table includes the 8 variable RES model (Bergel & Girard, 2000), of which there also 
exists a 5 variable version with traffic and 4 variables related to weather conditions (Bergel & 
Depire, 2004), i.e. without the price and household available income variables. Their Box & 
Tidwell (1962) formulation, which only uses the BCT defined in (8) on explanatory variables, 
is close to the formulation of DRAG-type models without actually strictly belonging to the 
same family. Indeed, it is important to transform also the dependent variable as in (9.1), even 
if the likelihood function then requires a Jacobean to pass from ( )yy λ to y and if this forces the 
researcher pay special attention to (9.2) in order to obtain residuals of constant variance. A 
BCT may induce heteroskedasticity, or it may not, depending on the case; if it does, the 
correction should be carried out simultaneously with the estimation of the BCT using an 
adequate joint procedure for (9.1)-(9.2). 
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The issue of differences across regions has been intelligently raised by Orselli (2001, 2003), 
but none of the models listed in Table 9 seriously deals with it even if the TRULS-1 model 
designed by Fridstrøm (1999), which is probably the most promising approach for the future 
of modeling, could eventually provide answers to some important questions such as: (i) what 
do we gain in shifting from national statistical models to regional models? (ii) how do the 
regions (19 counties in his case) differ, and could they be regrouped favorably? 
 
By pooling the monthly series of 19 Norwegian counties, Fridstrøm’s model is both national 
and regional. This new approach may eventually be used to explain the differences between 
modeling national counts and modeling regional ones. And given that his national model 
contains 19 regional models based on 264 observations, it may also help us to better 
understand the real differences between the regions themselves. 

6. Disaggregate models: organizing the literature 

6.1 Individual demand for transportation, accidents and their severity 
When the unit of observation is the individual, and even if the structure of the problem 
remains the same as with aggregate data (description, explanation/forecasting/simulation of 
exposure to risk, and of frequency and severity of accidents), modeling must be adapted to 
account for relationships among individual behavior, demand for transportation, risk of 
accidents and their severity as well as the socio-economic, demographic and geographic 
factors, and those that influence the supply of transportation modes and determine their 
respective evolutions over time. 

6.1.1. The tardy emergence of multiple levels 

A. Disaggregate data and in‐depth analysis of individual behavior 
Choices of activities, including their spatial location and hourly programming, generate the 
transport modes and path choices, and consequently the number of trips and their distances, as 
well as the time spent by mode and by the hour (Chipman et al., 1992). 
 
These quantities49 measure risk exposure because they characterize an individual’s presence 
on, and usage intensity of, the network. The risk of accident and the severity that follows are 
thus dependent on the degree to which the transportation network is used. The literature 
reports two different effects associated with network usage intensity. If intensity increases the 
probability of accidents, it can also increase the level of awareness and the level of experience 
of the driver (a form of human capital associated with the use of transport networks), perhaps 
reducing the severity of accidents that occur. 

B. Exposure, choice of mode included, since Warner (1962) or Abraham (1961) 
There are a number of quantitative models mentioned in the literature that, since Warner 
(1962), have dealt with the individual demand for transportation50. The question of 

                                                 
49 We noted above that individual data could be categorical (the best quantifying tools then being Logit or 
Probit) or in the form of “counts” (the most appropriate tool being the Poisson specification). The “individual 
data” discussed here include both. 
50 Warner’s Logit model of choice of transportation mode came later than Abraham’s (1961) models of road 
itinerary choice, a fact seldom acknowledged. For a reminder and documented survey of the latter’s random 
utility model derivations of the Probit and another choice model justification of Logit practice years before 
Domencich & McFadden (1975), see Gaudry & Quinet (2011). 
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transportation choices associated with the individual’s activities is extensively covered in the 
literature (see for example, Ben-Akiva & Lerman (1985), McFadden (2001), Ortuzar & 
Willumsen (2002). For questions associated with the degree of usage of the transportation 
network, see Chipman et al. (1992), Kumapley & Fricker (1996) and Hivert (2002). These 
studies identify socio-economic and demographic factors (price, age, sex, household 
characteristics, etc.) that explain the time allocated to transportation and/or the distance 
driven. 

C. The central role of pure accident frequency since Weber (1970, 1971) 
Other quantitative models contribute to a better understanding of the factors that have an 
impact on an individual’s probability of having an accident, this probability being considered 
independently of the severity of the accident. 
 
Abdel-Aty et al. (1998) for example, study the relationship between the probability of 
accident (i.e, the risk of accident) and demographic characteristics such as the age and sex of 
drivers. Hu et al. (1998) study the risk of accident among older drivers. Boyer & Dionne 
(1986, 1987) examine the relationship between different types of automobile insurance 
choices and driver’s behavior. This last matter raises moral hazard and adverse selection 
issues very difficult to analyze empirically, particularly with fixed, generally linear, functional 
forms [Gouriéroux (ch.12), 1999]51 that make it difficult to identify the anticipated risk52 in 
the choice of insurance equation, especially if the accident equations are written without 
variables that measure exposure risk directly (Boyer et al., 1991; Dionne & Vanasse, 1996) 
and without distinguishing between categories of accident severity53. 

D. A first three‐level DRAG‐type structure in 1993 
The double lack of realism just noted concerning the role of exposure and the heterogeneity of 
accidents (we noted above that severity is a critical dimension of the road safety problem) was 
commented on and solved by an exceptional three-level model by Bolduc’s et al. (1993, 1994, 
2012). Their first level explains [ OCC, DR ], the decision to drive and the distance driven. 
                                                 
51 In the context of the simultaneous determination of risk taking and actual risk described earlier, how are we to 
write a Line 4-type (Table 5) speed choice equation if the anticipated risk index [ A, G ]* depends on the same 
variables as those intervening elsewhere in {[Other factors]i

cc} as sources of surprises? It becomes difficult to 
identify the endogenous variables unless one uses as anticipated (expected) risk index a measure such as EMI 
(Expected Maximum Insecurity) that makes it possible to then distinguish between the two roles of a given 
variable (Gaudry, 2006a). Clearly, if the EMI index is not a logsum but a simple linear function that depends on 
the same variables as those explaining frequency and severity, the distinction cannot be made and the two roles 
of each variable (as a determinant of expected risk in Line 4 and as a source of surprises in Lines 2-3) identified. 
52 As in the choice of speed discussed in the previous footnote, if the choice of insurance made by an individual 
depends on his anticipated risk of accident in Line 4 and, in Lines 2-3 on the same variables that explain this 
anticipated risk, how can one separate the two effects in the insurance choice equation without resorting to a 
logsum index like EMI? 
53 This approach goes barely further than Weber (1970, 1971) where two types of infractions are used to predict 
the frequency of accidents but where there is no knowledge of whether or not these individuals have accidents of 
the same severity (in fact, Shade & Heintzman (2004) have shown that these drivers have more severe 
accidents). Unfortunately, Bolduc et al., (1993, 1994, 2012), who had opportunity to link bad driving to the 
severity of accidents by using the 4 variables that determine this behavior in their Table 13 by age group, fail to 
exploit this possibility in their models (of Table 11) by severity category (with material damage or with injuries) 
or by moment of the day (by day, in the evening or at night). Their results with respect to infractions to the 
Highway Code show a non-significant effect on the frequency of accidents similar to that found in Schade & 
Heintzman (2004), but show also that three other kinds of infractions have differentiated effects (sometimes null, 
sometimes even negative) on frequency by age group. It must be acknowledged that 29-variable equations may 
make it difficult to isolate factors that are more or less independent of each other. These factors are not 
comparable to those found in Krupp’s (2005) cross-tables reproduced in Figure 7.B. 
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The other two levels are considered, first in a formulation of [ A ] independent from severity, 
and second in a combined in an explanation of frequency by severity level [ A/G ]. In terms 
of quantitative technique, the estimates are obtained by the first application of the Tobit-
Poisson approach (Mullahy, 1986) to road safety data. In addition, results obtained with many 
other estimation procedures (e.g., Poisson and Negative Binominal) are compared. A 
landmark. 
 
Their estimates, unfortunately obtained with fixed mathematical forms, are based on data of a 
quality comparable to that used by previous authors, but with a greater number of variables. 
The set of variables includes, again after Weber (1970, 1971), past infractions to the Highway 
Code and to the Criminal Code, infractions sanctioned by the loss or temporary loss of the 
driver’s license, and some medical condition restrictions applying to the driver’s license. The 
authors’ twin explanations of frequency independent from severity and per category of 
severity make use of variables belonging to all PIMCYÂ categories, including driving 
experience distinct from age, type of driving license, region and trip purpose. 
 
Given the quality of the data and the number of levels used, it is certainly the most complete 
disaggregate model ever built. The Gaudry & Vernier (2000) model also has three levels (A)-
(G)-(CC), but focuses almost exclusively on the very fine characteristics of transportation 
infrastructure, road design, geometry and surface. In that sense, it is not as complete as 
Bolduc’s model: in spite of its flexible mathematical form, it lacks information on drivers and 
their vehicles, both variables that should not be analyzed independently from the others. The 
results are therefore no doubt biased, this time due to another double lack of realism (on the 
characteristics of drivers and vehicles)! These examples are summarized in Table 10. 
 

Table 10. Joint analyses of three out of four levels amongst [ OCC, DR ], A, G, and CC 
 [ OCC, DR ], A, G, CC Model Sample Variables Other 

Bolduc 
et al. 
(1993) 

-OCC : driving 
-DR : kilometers and time 
-A/G : freq. of severity 1, 2 

-Probit 
-OLS* 
-Tobit-Poisson 

8160 drivers in 1985-
1986 and their violations 

in 1980-83 

-30 from 77 
-36 from 77 
-30 from 77 

NLLS** 
Negative 
binomial 

Gaudry 
Vernier 
(2000) 

-A : all accidents 
-G : 3 severities 
-CC : moments of speed 

-Logit 
-Logit 
-OLS* 

-2 541 from 60 000 and 
-1 225 in 1991-95 
-17 indices from 60 000 

-32 from 80 
-68 from 80 
-6 from 80 

-Box-Cox
-Box-Cox
-Box-Cox 

  * Ordinary Least Squares. 
** Non-Linear Least Squares. 

E. Joint analysis combining exposure, frequency and other factors 
Few, if any, studies with discrete data have analyzed the three dimensions of road safety 
(exposure, frequency and severity) from the driver’s point of view as well as Bolduc et al., 
(1993, 1994, 2012). Their modeling approach is generally accepted today even if the data 
required for it are considerable and if the taking of simultaneity into account is 
econometrically difficult. But it remains a first cut with only linear variables and some 
unanswered questions. 
 
The authors’ analysis of exposure is refined and explains both the decision to drive and the 
quantity of driving. In the analysis of accident frequency, their principal model explains 
frequency by group of drivers (4 groups in most cases) independently from the severity level, 
as in Weber (1970, 1971); but they also provide a competing analysis of frequency by severity 
level that fails to isolate fatal accidents from other injury accidents: the two categories 
considered are injury and material damage only accidents. In this competing analysis (in the 
first 2 columns of Table 9), 6 sign inversions occur related to age or amount of driving by age 
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group and trip purpose. Moreover, the use of the occurrence of the substitute type of accident 
to explain each one involves using a dependent variable for a substitute good as regressor for 
the first: it is like explaining coffee sales by the quantity of tea sold, and vice versa. 
 
Clearly, this landmark formulation could benefit from further work to fully account for 
severity and to use flexible functional form on continuous variables, as in aggregate models. It 
should inspire practitioners of discrete data to develop system-wide analyses, including 
derivations of population values, a matter we shall return to. 

F. Two (or less)‐level models and the focus on the conditional severity of accidents 
A large number of statistical models combining explanations and forecasts of “exposure-
frequency” or “frequency-severity” can be found in the literature. Lourens et al., (1999) for 
example, analyzed the demand for travel on roads simultaneously with the probability that 
accidents occur. Deyoung et al., (1997) studied exposure to risk and the probability of 
accidents for California drivers who do not have a driver’s license or who have lost it. And 
Ryan et al., (1998) examined the influence of age on the exposure to risk and the probability 
that accidents occur. 
 
Other authors concentrate on the severity of accidents, explaining those accidents in detail and 
linking them to various categories of the population. Farther, we will see that this refined 
literature is growing rapidly. 

6.1.2. Analyzing exposure to risk 

A. Distance driven or travel time? 
Seen from the traveler’s standpoint, the researcher should first look at the exposure to the risk 
of accident facing the driver. To account for aggregate national outcomes, this is a more 
important factor than the probability that accidents occur and perhaps more important even 
than their severity. The next step is to evaluate the driver’s use of the transportation network. 
If the distance driven constitutes the main indicator of exposure, it is not the only one (see 
Chipman et al., 1992). Time spent driving and the number of trips made are also equally 
viable measurements of exposure to risk. Nonetheless, most explanatory and forecasting 
models of the extent of the transportation network use focus on the distance driven, breaking 
it down by transportation mode, by type of road infrastructure or by socio-demographic 
category. Occasionally, models include a simultaneous study of the frequency of trips. 

B. Mixing discrete and continuous variables 
Statistical models use regression techniques to explain and/or forecast variables 
quantitatively. These can be continuous or truncated, correlated in time and space or 
independent, depending on the underlying assumptions and on the way disaggregated data are 
structured. When the frequency variable is used to measure exposure to risk, they become 
regression models of continuous and discrete variables. 

C. Relating exposure to frequency 
It must be noted that these approaches seem to be more closely linked to the analysis of 
demand for transportation (exposure) than to the analysis of road safety per se. But this is not 
always the case. For example, Chu et al., (2004) looked at the way people cross a street using 
Stated Preference data. But, in fact, models designed to explain exposure often analyze the 
probability of accidents simultaneously. Modeled or not, exposure in naturally critical to the 
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explanation of the frequency of individual accidents and its absence, as noted above, basically 
invalidates many accident frequency models. 

D. Heterogeneity and individual data 
This is a crucial relationship. Short-term exposure to risk causes the frequency of accidents, 
but long-term exposure to risk may induce a change in the level of exposure to the risk of 
accidents. Nevertheless, at the individual level, these relationships do not carry the same 
weight as they do once they are aggregated. Values differ from one individual to another and 
cannot be easily aggregated. This heterogeneity is an important factor in the design and 
evaluation of transportation policies that target specific socio-economic segments of the 
population. 

6.1.3. Analyzing the frequency of accidents  

A. From exposure to other factors 
In Bortkiewicz’s approach of 1898, completed by Weber in 1970-1971, and which constitutes 
the disaggregate counterpart of Smeed’s work of 1949, the analysis of an individual’s 
frequency of accidents during a certain time period is quantitatively defined as the 
identification, specification and estimation of the distribution of the probability of the number 
of accidents during that period (e.g. Shankar et al., 2003). Representative examples are found 
in Table 11. 
 

Table 11. Representative analyses of the frequency of accidents since 1970 
 Accidents Model Sample DR, A, G P I M C Y Â Form 
Weber 
(1970) All Poisson 148 000, 

California, 1963 5 variables including DRt , A t-1 and C t-1 Linear 

Boyer et al. 
(1988) All Probit 20 027 drivers, 

Quebec, 1980-82 53 variables including A t-1 et C t-1 Linear

Fosser et al. 
(1999) 

Bodily 
injury or 
liable 

Logit 211 731, Norway,
1992-94 

42 variables including DRt, vehicle age (5), 
sex (1) of owner (17) and residence (19) Linear

Vernier 
(1999) All Logit 

2 541 on 50 000 
road sections, 

France 1991-95 

32 variables including DRt , speed and 30 
road infrastructure characteristics 

Box-
Cox 

 
Researchers can easily choose to model the probability of accidents only over a given time 
period, or over many. In all cases however, models seek to identify the factors that affect the 
statistical distribution. Studies have shown that the level of exposure to risk is a significant 
factor, thus a necessary one, but not a sufficient one, as demonstrated by Weber’s model, 
probably the most complete of all models listed in Table 11. No other model has used as 
many categories of relevant variables as Weber, the seminal, but often unrecognized, baseline 
to measure progress in discrete road accident analysis in the last 40 years. 

B. Actual exposure, a necessary but insufficient determinant of frequency 
Among factors of importance beyond exposure, the mode of transportation (car, motorized 
two-wheelers, non-motorized two-wheelers, busses, etc.) and the social and demographic 
characteristics of the individual (age, sex, etc.) matter. And, as mentioned previously, many 
authors (e.g. Boyer et al., 1988) imitating Weber’s (1970, 1971) approach without making 
due reference to his work, have included variables such as the driver’s past accident [ At-1 ] 
and infraction [ Ct-1 ] records. Often, such models have more explanatory variables than 
Weber’s but unfortunately fail to include the measure of exposure required for progress in the 
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explanation of accident frequency, using instead for this purpose auxiliary dummy variables 
per age and region, in the manner of actuaries. These categorical variables, poor substitutes 
for continuous observed exposure, can bias the estimated coefficients of other variables, as we 
now discuss further. 

C. Dummies en lieu of actual exposure and resulting frequency estimation bias 
The proper representation of exposure in an explanation of accidents during a particular year, 
such as 1982, is indeed critical to the realism and unbiased estimates. Studies completed in 
Norway on the frequency of accidents and the age of the vehicle (Fosser, 1992; Fosser & 
Christensen, 1998; Fosser et al., 1999) have shown that the annual frequency of accidents 
cannot be considered independent from (orthogonal to) the exposure to risk. The same has 
been shown by Bolduc et al. (1993, 1994, 2012) working with data similar to those used by 
Boyer’s et al. (1988), but for the 1985-1986 year. 
 
These studies carried out by Fosser and Bolduc are strictly econometric in nature and as such 
differ from (partly or fully) actuarial models that rely on categorical dummy variables as 
measures of exposure. The latter are safe enough for forecasting but are also typically 
obscure, and not only biased. Breaking an annual cross-sectional sample down into categories 
by age and region amounts to using monthly auxiliary dummy variables in a monthly time 
series model. It reproduces the phenomenon but does not explain it. The bias in coefficient 
estimates arises from the fact that the “actuarial” dummy variables are never orthogonal to the 
remaining proper explanatory variables. 
 
It is then without surprise that playing with various distributions in the estimation of a 
frequency model, as in Boyer et al. (1990), turns out to yield very little: modifying the 
distributional assumptions cannot in a model compensate for the lack of valid exposure 
variables or for the use of supposedly linear “regression components”, both at the center of 
any empirical accident frequency model. The results obtained by Fosser, Bolduc and their co-
authors have established the crucial role played by the proper exposure variable and models of 
the DRAG family have cast doubts on all results based on supposedly a priori fixed 
mathematical forms for all variables, and notably for the measure of exposure. 

6.1.4. The detailed analysis of severity, a recent endeavour 
Derived from countless reports and databases on road accidents, statistical models applied to 
the analysis of the severity of accidents are very numerous. Table 12 lists the most 
representative, among which Kockelman & Kweon, (2001), Zhang et al., (2000), Farmer et 
al., (1997) and O’Donnel & Connor (1996) are to be found. Their objective is to explain the 
variations in the distribution of the severity of accidents by the demographic characteristics of 
the persons injured, by the spatialization of the accident and by an elaborate set of fine details 
describing the environment [ Eav ] where the accident took place. All this information is 
derived from databases providing detailed information on individual accidents [ A ]. We note 
that none of the examples of Table 12 yet uses the notion of panel, even if multiple successive 
cross-sections of observations on the same individuals are actually available and used. 

A. The idea of the “fine environment” of individual accidents 
Latent variable models, whether of ordered or unordered choices, such as Probit, Logit and 
GEV ― (see Gourieroux (1989) and Train (2003, 2007) for a theoretical and algebraic 
description of their requirements and properties) ― are probabilistic approaches to the 
identification of factors having significant effects on the level of severity of accidents: 
location (at an intersection or in a specific lane, etc.), configuration (number of cars, type, 
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direction of traffic, etc.) of the accident (e.g. Clifton et al., 2009), age and sex of the victims, 
weather conditions, type of lighting used on that particular section of the road or highway, use 
of safety equipment, etc. 
 

Table 12. Representative analyses of the conditional severity of accidents 
Variables 

Authors Model 
M C I Env A 

Farmer et al. (1997) Multinomial Logit Yes Yes – – Yes 

O’Donnell & Connor (1996) Ordered Probit and Logit Yes Yes – – Yes 

Khattak et al. (1998) Ordered Probit and dichotomous Probit – – – Yes – 

Renski et al. (1999) Ordered Probit – – Yes – – 

Chang & Mannering (1999) Nested Logit Yes Yes Yes Yes Yes 

Krull et al. (2000) Multinomial Logit Yes Yes Yes – Yes 

Al-Ghamdi (2002) Multinomial Logit – Yes Yes Yes Yes 

Kockelman & Kweon (2001) Ordered Probit Yes Yes Yes – Yes 

Bedard et al. (2002) Multivariate Logit Yes Yes – – Yes 

Dissanayake & Lu (2002) Multinomial Logit Yes – Yes Yes – 

Ulfarsson & Mannering (2004) Multinomial Logit Yes Yes Yes Yes Yes 

Kweon & Kockelman (2002) Ordered Probit and Poisson Yes Yes – – – 

Toy & Hammitt (2003) Multinomial Logit Yes Yes – – Yes 

Khattak & Rocha (2003) Ordered Logit Yes Yes – – Yes 

Wang & Kockelman (2005) Heteroskdastic Logit Yes Yes Yes Yes – 

Holdridge et al. (2005) Nested Logit Yes Yes Yes Yes Yes 

Lapparent (2005) Beta-Binomial Yes – Yes Yes Yes 

Lapparent (2006) Multinomial-Dirichlet Yes Yes Yes Yes Yes 

Eluru & Bhat (2007) Bivariate Ordered Logit (mixed distr.) Yes Yes Yes Yes Yes 

Lapparent (2008) Bivariate Ordered Probit Yes Yes Yes Yes Yes 
C: driver characteristics; M: vehicle characteristics; I: infrastructure characteristics; Env: environnemental 
characteristics ; A: accident characteristics. 
 
B. The observed levels of severity 
The true level of severity of an accident is considered as unobserved and approximated by a 
discrete variable generally obtaining a value based on interval values taken by the latent 
variable. Most applications rely on a four-level classification of the severity of accidents: 
material damage, light injuries, serious injuries and death (see Figure 13). However, some 
databases use less common categories. 
 

Figure 13. Conventional link between degree of severity and category of severity 
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C. Severity and ordered measurements   
When categories of severity are ordered and/or are very detailed ― based on a combination of 
many factors accounting for severity ― the statistical models are either polytomous 
unordered discrete variable models (eventually multidimensional) or models with discrete 
ordered polytomous variables. An example of the first case would be the combination of the 
level of severity with an indicator of the use of safety equipment, or the level of severity 
multiplied by a dummy variable indicating the degree of responsibility of the driver. An 
example of the second case could be a distinction between bodily injury and material damage 
events, each based on a latent continuous ordinal variable, with some recognition of the 
possibility that they could be correlated. For more information on unordered discrete variable 
models, see Ulfarsson & Mannering (2004) or Kim et al., (2007). There are thus many ways 
to define the severity of accidents.  

D. Severity and simultaneous estimation 
Recently, equation systems have progressively been designed to account for simultaneity in 
the determination of many variables that explain the level of severity of an accident. The idea 
is to account for the drivers’ safety and care decisions (the set [ CCi ] of line 4 in Table 5) in 
explaining the severity (in line 2-3 of Table 5), and sometimes to account for the reverse 
effect of anticipated severity on the care decision itself. For instance, Gaudry & Vernier 
(2000) simultaneously determine speed, (frequency) and severity of accidents on certain 
French road segments in this way. 
 
Eluru & Bhat (2007) and Lapparent (2008) for their part have suggested that the factors 
influencing the use of safety belts and the severity of accidents could be studied 
simultaneously ― to account for the fact that, even if the decision to buckle up is a personal 
one, it has a direct effect on the degree of severity of an accident. The models suggested by 
these authors are bi-dimensional. Their object of study is the same, but statistical 
specifications differ according to the way in which these relationships are defined. 

6.1.5. Other approaches and unsolved problems 

A. Empirical typologies 
There are numerous other approaches seeking to model the distribution of the probability of 
certain layouts of accident scenes and the probability of levels of severity derived from the 
analysis of a plethora of accident reports. For example, it should be possible to build a 
statistical model of the type of collision, of the number of cars involved (eventually by type), 
of the number of victims and of the severity of their injuries. This type of model allows for 
the establishment of a measurement of the rate of occurrence (in relation to the total number 
of accidents) of certain types of accidents and of levels of severity of the injuries suffered by 
the drivers involved in these accidents, based on a typology of accidents (to be defined 
according to the need and the precision sought).  
 
The results should provide a definition of the types of accidents causing high levels of 
severity and consequently lead to practical recommendations designed to decrease their 
number. Precise and detailed reports of individual accidents are a gold mine of information 
offering vast modeling opportunities and contributing to a better understanding of the 
typology and severity of road accidents. 
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B. Defining the time period and simultaneity 
Some approaches worth mentioning are seldom found in the literature on road safety 
performance models. These are models that examine simultaneously the frequency and the 
severity of accidents linked to an individual driver over a given time period instead of at a 
given moment t in time (in which case the exposure to risk is predetermined). Simultaneous 
analysis can only be applied to other factors such as behavior at the wheel, frequency and 
severity. However the data required are scarce and disparate. 

6.2. From microscopic to macroscopic: how to aggregate 
In order to assess the effectiveness of newly implemented road safety regulations, some 
disaggregate results must be generalized. It is a justifiable requirement that allows policy 
makers to evaluate the global effect of the policies while, at the same time, taking into 
account the finer details of the information collected. As a corollary, the consequence of this 
generalization is that the researcher has to choose a reference aggregate: will it be a social 
group, a geographic zone, a transportation network or transportation modes? 
 
The issue of data aggregation was raised early on in discrete demand analysis (Kulash et al., 
1972) and solved practically as the choice of mode literature flourished after Domencich & 
McFadden (1975). The issue arose as that of the values attributable to given population but 
derived from a sample of modeled “representative individuals”. Difficult questions of 
consistent aggregation from the microeconomic to the macroeconomic were ignored: the 
problem was simply to derive aggregates from functions estimated from discrete data, and not 
to find aggregated functions of characteristics compatible with the individual ones54. Demand 
models were of course exposure models, but driving risk was not on the menu. 

6.2.1. Demand independent from accident risk 
In the literature, we have in fact found no discrete choice demand or mode choice model 
where the anticipated risk of an accident is taken into account when the driver decides to take 
on the risk of driving (the exposure risk). It can be said that a modeling approach seeking to 
derive total values for a given population is still in its infancy, in particular with respect to the 
frequency of accidents and their severity. 
 
The first models of regional or urban values derived from individual results are promising, as 
in the UrbanSim project (Waddell et al., 2003). We hope that this approach will be applied to 
national road safety performance statistics in the future. This would require accounting for 
driving risk in the very structure of the models, as well as important structural extensions. 

6.2.2. Criteria and scale of aggregation 
How should one aggregate? By combining a number of aggregating criteria? Elvik (1988) has 
already noted that it is difficult to define indicators of road safety when using aggregates of 
individual data from socio-demographic groups: the sample of observed accidents has to be 
redressed, i.e. corrected, to take into account missing information, particularly in the case of 
accidents with material damage only and light injuries. Thomas (1996), for her part, studied 
the aggregation of spatial information in order to model road safety performance itself. 
 

                                                 
54 These questions of compatibility between aggregates and micro-relationships are summarized in many articles 
(e.g., Fortin, 1989). 
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There is a wide range of possibilities for data aggregation, from individual data to the national 
level (or higher even). All levels of observation allow for the analysis of factors having an 
impact on road safety. These approaches are called mesoscopic. They rely on the design of a 
particular view of the problem and on the choice and gathering of semi-aggregated or semi-
disaggregated data. The analysis of the exposure to risk and the analysis of the severity of 
accidents are themselves based on levels of observation and on criteria that are not specific to 
the individuals or to a country. The most commonly used levels of observation are: the 
different modes of transportation, the age groups, sex, the transportation network (with 
subcategories by speed, status or segment characteristics, regions, States (USA), Departments 
(France) or Provinces (Canada), metropolitan areas and other geographic and/or 
administrative divisions). 

6.2.3. Is aggregation part of the definition of a discrete model? 
This is a fundamental question: where do we draw the line between a quantitative model 
based on disaggregate data and a quantitative model based on aggregate data? When does a 
model become formally disaggregate? It is in the way the aggregation is done, i.e., when 
values attributed to a population are derived from individual data? 
 
It may be said that deriving values for a whole population is in fact part of a complete 
disaggregate model. This is what Bolduc et al., (1993, 1994. 2012) did by clarifying their 
procedure in their title “a disaggregated tool…” and including as part of the model a 
simulator. To do otherwise would amount to estimating equations for a particular group 
without being able to calculate the elasticities of the aggregates. Assessing road safety policy 
and regulation thus requires that a disaggregated model come with a built-in “simulator of 
aggregates”. 

6.3. Spatialization of the data: is the network the solution? 
When the unit of observation is a network segment, the modeler has the option of developing 
a model component to forecast the generation and location of accidents (by mode and level of 
severity) and to integrate this module to components accounting for the demand for transport 
and its assignment to the network.  
 
The purpose is to make spatio-temporal analyses of the variation of accidents by type 
occurring on the network. How many accidents? Where did they take place? Has there been a 
change over time? 

6.3.1. Frequency of accidents 

A. Frequency and infrastructure 
One can study at the link level the relation between their characteristics, demand and 
accidents. This is a commonly used approach that aims to explain the impact of infrastructure 
on the number of accidents given a specific demand for transport. This method allows for the 
identification of the factors on a road segment that have accident potential (also called black 
spots or black zones). Understanding the relationship between the frequency of accidents, 
traffic, and particular road infrastructure characteristics (vertical or horizontal geometry, 
number of lanes, direction of the flow of traffic, surfaces, fixings, road signs and markings, 
speed limits, etc.) has always been of interest to the community of researchers. McGuigan 
(1981) long ago suggested that it might be possible to identify dangerous sites using this 
approach. We have noted above in section 4.1.2 and Table 5 that the formulation of the 
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problem is modified in a simultaneous equations formulation linking driving care [ CC ] and 
accident frequency and severity [ A , G ]. 
 
It is also the case that, to the extent that accidents are largely random, or that the regression 
component of the accident model only explains a relatively small part of sample variance, 
extreme care is warranted in the analysis of interventions to correct “black spots” because the 
extremely atypical (high) values of the count tends to “revert to the mean”, i.e. change over 
time by themselves towards their mean value independently from interventions: it is therefore 
difficult to establish the effectiveness of measures to suppress black spots to the extent that 
they are so variable due to unaccounted for random reasons (Hauer, 1996). With or without 
the intervention, the atypical random value most likely won't exist in the next period and the 
safety performance of the link will improve. 

B. Frequency and data counts 
This type of modeling requires count data. From Poisson’s (1837) original approach right up 
to the recent synthesis by Cameron & Trivedi (1998) and the work of Munkin & Trivedi 
(1999), the theoretical development of statistical models based on counts has progressed in 
giant steps. Nowadays, count data models integrate refinements such as heterogeneity, 
heteroskedasticity, selection biases, truncation, simultaneity biases, endogeneity biases, 
spatial correlation, temporal correlation, etc.  The study of black spots triggered new count 
data formulations (and/or the modification of old ones) using new data sets, sometimes long 
after the availability of the improved technique. There are many examples of this type of work 
in the literature. 

C. From Poisson to Bayes 
Most mathematical models use the Poisson distribution and its extensions (un-observed 
heterogeneity, temporal auto-correlations), sometimes within a multi-dimensional framework 
but seldom with spatial correlation. 
 
The Poisson model and the Negative Binomial model remain the dominant quantitative tools 
for research done in this field. Applications focus mainly on road accidents involving 
motorized vehicles (e.g., Miaou, 1994; Persaud, 1994; Shankar et al., 1995; Hamaoka et al., 
1999; Hauer, 2001). Similarly, most methods used to estimate accidents are based on the 
classic statistical principles of inference. However, the number of approaches based on a 
Bayesian paradigm is increasing (Persaud & Kazakov, 1994; Persaud et al., 1999; Bossche et 
al., 2003). 

6.3.2. The location of accidents 

A. Frequency and spatialization 
One of the consequences of attempting to explain the frequency of accidents on specific road 
segments or intersections on a transportation network is the need to spatialize the accidents. 
This means integrating the spatial dimension to the other elements that define and 
characterize the network. This is not a novel approach, but with the help of very precise recent 
information and communications technologies, collecting statistical data has had renewed 
success. 
 
In the last 15 years, we have witnessed an immense increase in the quantity and quality of the 
information on transportation networks. As a result, the methods used to analyze these new 
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data (including traditional modeling) have also improved enormously. This improvement 
becomes obvious when we compare present with past work, for example, those of Deacon et 
al., (1975), Hauer & Persaud (1984) and Hauer (1986), to the recent studies of Schlütler et al., 
(1997), Heydecker & Wu (2001) or Flahaut et al., (2002). These greatly improved means and 
methods are used for two types of analyses: exploratory (or descriptive) and statistical (or 
explanatory). 

B. Descriptive analysis 
An example of the first type of analysis worth mentioning is Concerto, a French application 
developed for the official French statistical office responsible for road safety statistics 
(ONISR). It processes the data on accidents for the benefit of local or national research 
projects on the subject. It categorizes accidents on the basis of given criteria, illustrates the 
results on maps, identifies itineraries and allows for subjacent statistical studies such as 
indicators of safety, multi-factor analyses, pre and post adjustment assessments, identification 
of dangerous zones, development of trends, etc. Concerto’s main purpose was to track the 
evolution of accidents over time and provide decision-makers with information relevant to 
urban planning and road safety. The data collected is fed into a GPS system (Système 
d’informations Géographiques (S.I.G.)). 
 
As far as we know, Concerto does not contain an explanatory statistical model, nor is there a 
built-in underlying predictive model. The data are analyzed a posteriori and projections are 
made based on an interpretation of variables the relationships and dynamics of which have not 
been explicitly modeled. In other countries where this type of data gathering is possible, 
similar computer programs and approaches have become very popular. 

C. Explanatory analysis 
Explanatory or predictive models (e.g. Maher & Summersgill, 1996) have also evolved. In the 
last few years, a few models based on generalizations of parametric regression models using 
count data have been developed. Be they Poisson or not and multi-dimensional or not, they 
occasionally include non-observed heterogeneity or temporal correlation (e.g. Ulfarsson & 
Shankar, 2003) but only rarely spatial correlation. 
 
This is very surprising, given that road segments are obviously linked together and that an 
accident on one segment can affect the whole transportation network. Nonetheless, these 
models help explain and predict the location of certain types of accidents on a network 
according to the distribution of traffic and the characteristics of the network, even if their 
handling of spatial correlation of residuals leaves much to be desired. 

6.3.3. Taking road safety into account in policy evaluation  

A. The spatial dimension in demand and accident analysis 
The merging of the disaggregate approach for spatializing accidents to a system that forecasts 
and simulates the demand for transport has not yet been effected. It would however constitute 
a step towards explaining the relationship between a higher level of demand for transportation 
and a higher risk of accidents. It would also help quantify the impact of certain policies (fares, 
infrastructure, etc.). 
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B. Traffic flow 
The occurrence of accidents and their location depend on the flow of traffic on the network. 
This flow stems from the aggregates of origin-destination movements. This demand is 
distributed over itineraries and modes of transportation. As a result, any policy affecting one 
mode can potentially affect the location of accidents on another mode. And any policy having 
an effect on the quantity or the variety of the supply of transportation affects the spatial 
distribution of accidents and their level of severity. 
 
One can easily imagine the effect of the introduction of a policy promoting public transit. An 
increase in the use of public transportation would decrease the load on the road network. The 
remaining traffic would move faster, particularly on certain segments. Given a lighter load, 
increased speed and some physical characteristics of road segments, the probability of certain 
types of accidents occurring, their distribution, location on the network and level of severity 
would also change. However, researchers can only evaluate the impact of the policy a 
posteriori, unless they possess ex-ante the tools and data necessary to predict and quantify the 
shifts from one mode of transport to another, not the least of which is a shift to more 
dangerous two-wheel vehicles. 

C. The road segment as the observation unit 
Modelers have a unit that is common to both forecasting systems when choosing a segment of 
the transportation network (even a rail segment) as unit of study, the network being 
considered as their particular spatial structuration: the two could be merged. For example, a 
predictive model for the demand and distribution of traffic in a specific area (a classical 4-step 
model) could be merged with a predictive model of the probability and spatialization of 
accidents in the same area. 
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Part 3. Multivariate road safety models: future research 
orientations and current use to forecast performance 

7. Concern for user classes: top down or bottom up? 
What should the next step in road safety performance modeling be? The basic distinction 
between aggregate and disaggregate streams will likely continue for a long time: the merger 
of the two approaches is beyond the realm of current possibilities, even assuming that any 
safety issue can be addressed with either kind of data, which is very far from certain. Think of 
critical problems, such as that of the structure of the market over time and that of “the bottom 
of the barrel”. 
 

For instance, could “The Mystery of 1972-1973” mentioned in Section 3.2 of Part 1 ever be 
studied with panels of discrete data combined with credible aggregators to national values in 
order to explain the location of the maximum in each country (of the 30 listed in Table 4, 4 
maxima in 1970, 10 in 1972, 3 in 1973, etc.)? Similarly, if the downward trend in those 
countries that are past their maximum in fatalities is slowing now down, or even reversing 
itself, how can panels help to predict an asymptote or an eventual turning point? 
 

Conversely, how could the intrinsic dangerousness of classes of individuals identified by 
Weber’s use of past offense records, and shown to be independent from their age and sex by 
the extraordinary German data of Figure 7.B of Part 1, ever be studied with aggregate data? 
How could one avoid using discrete data to design (and evaluate) laws and penalties in order 
to target problem groups instead of everybody, or even the average individual? 
 

Despite the difficulty of, and perhaps the unwise hope for, a methodological unification of the 
field, a few current concerns shared by both traditions deserve to be mentioned along with 
more fragile hypotheses on the future of modeling55, particularly with respect to forecasting. 
The first such development is the growing interest in classes of users, mentioned rather in 
passing in the previous two Parts of this state-of-the-art. Clearly, classes of victims change in 
relative importance over time and user behavior is heterogeneous in specific ways that should 
matter for the understanding of the quantity and evolution of national totals themselves.  

7.1. The topdown ways are many 

7.1.1. Should totals be disaggregated into user classes? 
If we try to explain the 1972-1973 “mystery peak” in the death toll on roads, an issue of 
particular importance to countries where this toll is still rising, breaking down the toll by 
category will not necessarily help us find a causal relationship. In France for example, the 
only user category that did not peak in 1972, together with pedestrians and car drivers, is 
cyclists (see Figure 14, from Orselli, 2004). 

A. Total behavior and behavior of the components 
How do sub-totals of fatalities evolve for the 12 other countries than France (listed in Table 4) 
sharing with France the moment56 of their maximum in 1972-1973? This question has not 
been studied, but one can look at some particular cases, like The Netherlands (which peaked 

                                                 
55 The statistical methods of econometrics applied to transport will continue to improve. At this point in time 
though, we have not seen or heard of a statistical or econometric method that has been developed specifically for 
road accident analysis in the way the Logit surge has been driven by the study of mode choice since 1975.  
56 As in most countries the yearly maximum is in August, countries that had their yearly maximum of fatalities in 
a certain year, such as 1972, probably had their actual maximum in the same month. 
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in 1972 as well), in Figure 15 where the breakdown by user category is similar to that for 
France. Pedestrian deaths peaked in 1972-1973 in both countries, but the similarity ends there. 
The number of cyclist57 deaths peaked in 1972-1973 in the Netherlands but not in France, and 
the number of light utility vehicle deaths peaked in 1972-1973 in France but did so years 
before, between 1965 and 1969, in the Netherlands. 
 

Figure 14. Breakdown of non-automobile casualties, France, 1957-2004 
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Figure 15. Breakdown on non-automobile casualties, The Netherlands, 1950-2005 
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Thus, a simultaneous global maximum is not a proof that user categories behave the same 
way as the totals. A multi-national modeling analysis might help us better understand the 
1972-1973 phenomenon, but its potential results can hardly be relied on. Figures 14 and 15 
illustrate the need for disaggregated analyses of user categories but do not suggest any way of 
doing it. 
 

                                                 
57 Bicycles are commonly used in the Netherlands, often as a means of transport to go to work. 
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B. How to analyze the components? 
There are basically two ways of analyzing the time series of data for user categories. First, 
one could directly formulate an equation for each category; second, one can try to explain 
category shares. In this latter case, the probable approach would be “quasi-direct”, with the 
number of victims by category expressed as the product of a model explaining all victims by 
another explaining their shares or probabilities of occurrence. 
 
With the first option, how could one explain and forecast the evolution of each component 
separately? For instance, we know that the number of victims of motorized two-wheel crashes 
depends on the size of the fleet, as Figure 16 shows with 56 observations in the Netherlands58. 
 

Figure 16. Motorized two-wheels: fleet size and casualties, The Netherlands, 1950-2005 (Stipdonk, 2007) 

 
 

But then, how can one distinguish the influence on each victim category of its own fleet from 
that of other fleets? In the same way, how does regulation, often designed for one specific 
category of road users influence outcomes for other categories? If all variables are used in all 
equations, it becomes difficult to separate what influences mostly the total from what affects 
primarily a given category, as the second option better allows for by its very structure. 
 

The “Quasi-direct format” is commonly used in the analysis of transport demand. It makes it 
possible to reassign certain variables (e.g. the gradual implementation of the safety helmet 
regulation59) from the model part explaining the total number of victims (where their effect is 
barely perceptible) to that explaining the shares, where fine effects on sub-categories can 
more easily be identified. And it also makes it possible to have certain variables play distinct 
roles in the explanation of totals and shares. How could that be? 

C. The Quasi‐Direct‐Format (QDF) 
To illustrate why this approach could better serve the analysis of categories of accidents that 
the direct one, let us take a close look at its formulation in studies of demand for transport. It 
multiplies an explanatory equation of the demand for all modes of transportation (Tij) by 
another model, Logit or other, explaining the mode choice pijm, as follows: 
 

                                                 
58 It appears that there was a 40% increase in registration of motorized two-wheels in Paris from 2002 to 2007. 
Given the relationship between accidents and size of fleet seen in the Netherlands, we can expect a larger 
number of victims in this category in France as well. 
59 Safety helmet regulation was introduced gradually in France. In June 1973, it applied to motorcycles and 
outside city limits, and to drivers only. The regulation was further extended in 1975, 1976 and 1979. 
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(10) 
m mij ij ijT T p=   

 
where Tijm is the flow between i and j by mode m, formulated explicitly for all origin-
destination flow from i to j and mode m : 
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where Uij , a global utility index of all modes, couples the two original models and captures 
the induction effect as follows: 
 

(12) 
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a formulation that varies with the chosen share model, for example, a linear Logit: 
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As a result, when a network variable Xmk changes, the elasticity of the total demand per mode 
with respect to the change in this variable can be broken down into two additive parts: one on 
the modal choice and the other on the induction. This breakdown results from (10) being the 
product of models: the elasticity of the total number per mode is thus written as the sum of the 
elasticities of the dependent variables of each model used, each written η ( y, Xk ):  
 
(14) [ η Demand for Mode m ] = [ η Total Demand for all modes] + [ η Share of Mode m], 
 

i.e. neglecting the modal index to simplify: 
 

(15) η η η( , ) ( , ) ( , ),T X T X p Xm k k m k= +  
 

or even more explicitly as in (16). 
 
The QDF usually implies that any variable Xk  can appear not only in the share model, and as 
a result in the Utility index Uij  if the model is coupled, but also in the actual model of total 
level. For instance, income can affect the choice of mode AND the overall level of mobility. 
As a result, (15) is written at length as follows:  
 
(16) ),(),(),(),(),( kmkkkm XpXUUTXTXT ηηηηη +•+=  
 

a sum where the right hand side can easily be interpreted: the first two terms are induction 
elasticities and the third is the elasticity of the modal shift. In most models, only socio-
economic variables appear in the first and third term; the network variables appear in the two 
others. It is also possible to combine aggregate-type models of levels with models of shares or 
of probabilities; a utility program (Liem & Gaudry, 1994, 1998) calculates all terms used in 
(16).  
 
QDF may be used whenever the combination of the explanation of the total and that of its 
share is preferable to building models with as many levels as there are alternatives. For 
example, if we explain the demand for public transportation by mode of payment, it is more 
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difficult to design a model with equations for each transport entitlement (cash, individual 
ticket, booklet, special card, etc.)60, than it is to combine a model of choice of title with a 
model of demand for public transportation based on the utility of all  modes of payment61.  
 
The application of the QDF structure to accidents remains to be formulated in detail and the 
explanation of accident shares by category will not be simple either. For example, why did the 
share of casualties associated with motorized two-wheels increase in France (from 20.6% in 
1972 to 23.1% in 2006) but decrease in the Netherlands over roughly the same period (from 
22.0% in 1971 to 17.7% in 2005), in both cases, after their peaks? Is it pure happenstance? 

7.1.2. Is the detailed network level the solution? 
Explaining accidents at the detailed network level may be an interesting approach. Different 
types of infrastructure do show different performances. For instance, the French casualty rates 
illustrated in Figure 17 (Rollin, 2004) indicate that, in 2006, 75.24% of the 4,709 deaths 
resulted from accidents on secondary and local roads (the rest were on highways and national 
roads). 
 
However, when explaining the demand (and the exposure risk) from i to j, one is led to think 
that aggregating by type of road network has its limits. Indeed, itineraries generally combine 
segments of different networks. This means that socio-economic factors and distinctions such 
as urban vs rural may provide more relevant information than the type of itinerary or the type 
of road segment used. Segments will help define the risk associated with one itinerary from i 
to j but will not constitute an aggregation criterion sufficient to meet the requirements of 
behavioral national road safety models. The reason is that compiled totals will be constructed 
only from the characteristics of individuals and their distributions and merely be derived for 
the road segments chosen by these individuals. In a behavioral model, individuals make 
choices but roads do not, even if they may influence the choices people make, and notably 
their exposure decision due to their link-specific risk characteristics. 
 

Figure 17. Casualty rate per billion car-km and by network, France, 1990-2004 

 
 

                                                 
60 As Gilbert & Jalilian (1989) did with limited success for London. 
61 As Laferrière (1997) did simply for Montreal and Transek (2006) did more elaborately for Göteborg. 
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The fundamental difference in units of measurement ― sometimes referred to as 
“dimensions” ― between demand (from i to j) and road flows (on segments s) remains 
decisive. Naturally, studying the flow of traffic on segments is useful, for example to 
calculate specific risk indicators for itineraries composed of segments varying in their risk 
generating properties. 

7.1.3. The environment: is the milieu the solution? 
Behavioral aggregates show marked differences between urban and non-urban areas in all 
countries: Figures 18 and 19 illustrate the case for Algeria. At first sight, the behavior of the 
two monthly series in Figure 18 may give the impression that the urban and rural fluctuations 
are close enough and move together, but their ratio, found in Figure 19, reveals actually very 
different time profiles of the underlying component series. When closely examined, Figure 19 
exhibits some cyclical behavior of the ratio, as well as deeper differences during the enhanced 
road security measures (say from 1991 until 1995) associated with the civil war, such as army 
road block intensity across the various networks, etc. 
 

Figure 18. Monthly rural and urban casualties, Algeria 1970-2006 (Himouri & Gaudry, 2008) 
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Hopefully, the distinction between urban and non-urban areas will be studied further, and not 
only for Algeria. It implies more than differences in levels of traffic, notwithstanding the 
increasing importance of congestion in urban areas caused by speed limits and restrictions of 
all sorts designed for environmental reasons but in actual fact increasing pollution. The 
differences are also more than socio-economic (e.g. income levels or types of households) 
because variables like levels of activity, car occupancy rates, itineraries and types of vehicles 
may play a significant role. The increasing variance62 over time shown in Figure 19 suggests 
that, ideally, distinct rural and urban model components should be built for Algeria. Regions 
do not make choices any more than roads do: people make choices. 
 
But formulating distinct models for urban and rural areas raises the problem of the availability 
of data, notably of the car-km figures necessary to insure the professional credibility of any 
road safety model (academic publications often meet lower standards on this point, as noted 
in the discussion of discrete choice models in Part 2). It also raises the following question: 
should one build, for households and transport companies, distinct models for urban and rural 
trips, and if so, can one decide this matter except intuitively without complex tests to establish 
the statistical validity of the difference? Equations for substitute or complementary outcomes 
like accidents of various severity levels do not constitute independent trials, but the statistical 
tests used in road safety models have yet to integrate this point: on this question, see Gaudry 
& Himouri (2012). 
 

Figure 19. Ratio of rural to urban monthly casualties in Algeria, 1970-2006 

0

1

2

3

4

5

6

7

ja
nv
.-7
0

ja
nv
.-7
2

ja
nv
.-7
4

ja
nv
.-7
6

ja
nv
.-7
8

ja
nv
.-8
0

ja
nv
.-8
2

ja
nv
.-8
4

ja
nv
.-8
6

ja
nv
.-8
8

ja
nv
.-9
0

ja
nv
.-9
2

ja
nv
.-9
4

ja
nv
.-9
6

ja
nv
.-9
8

ja
nv
.-0
0

ja
nv
.-0
2

ja
nv
.-0
4

ja
nv
.-0
6

 
 
Generally speaking, when population density is used as an explanatory factor of road safety 
performance, one finds fewer differences between Europeans countries than national averages 
lead us to expect (Orselli, 2001, 2003). But differences between regional characteristics, 
including population density, have not yet been studied for our purposes ― anywhere ― and 
it is not yet possible to study easily the impact of cultural differences (e.g. trust attitude). 
 

                                                 
62 The strong increase in the number of fines handed out to drivers after March 1st 2005 visibly modified the 
ratio. Between 2005 and 2007, the number of casualties decreased in urban areas by more than 20% but 
increased slightly in rural ones. 
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7.1.4. Down from the 1972‐73 peak: toward a constant or a minimum? 

A. The peak has yet to be explained 
However, using one method or another to break down aggregates, or to sum over individual 
data, by user class may not much help the explanation of the “mystery of 1972-1973”. 
Smeed’s simple model loses some effectiveness at high car per capita rates, but researchers 
using data some 60 years more recent than his sample of 1938 continue to observe an inverse 
relationship between the rate of equipment63 and the mortality rate, as shown in Figure 20 
where one should note the logarithmic scale on the y-axis, as in Table 3 of Part 164.  

B. The immediate future: a local minimum or an asymptote? 
 In any case (with or without a breakdown), the task is not only to make sense of the peak 
observed in each country ― to say nothing about their joint occurrence ―, but also to 
interpret the present trends and to forecast the future. For instance, there is a real question as 
to whether many current national totals on downward trends since the peak are evolving 
toward a constant, a sort of asymptotic value of the number of persons killed (and perhaps 
severely injured), or are approaching a minimum soon to yield a clear turning point. The USA 
reached a first minimum in 1992 quite distinct from the current decrease of 22% linked to the 
economic collapse, starting in 2006; Great Britain had a plateau of sorts during the same 
period (1992-2005) and, in many countries of the EU-27, the year 2007 was the first since 
2001 without a decline in the number of persons killed on roads and, in many countries ― 
notably Scandinavian (see Figure 21, after IRTAD, 2008) ―, the situation worsened.  

 
Figure 20: Victims killed or injured per car versus number of cars per capita, 29 countries, 1998 

 

 
 
Some 40 years after the peak on 1972-1973, today’s fatal accident counts in countries of that 
vintage may be trending toward a natural and incompressible minimum caused by a random 
component that implies insensitivity to policy; or they may be following an asymptotic central 
course with a limit value to be reached when the car occupancy rate reaches 1,00 (i.e. 100 in 
Figure 20), a limit itself dependent on transport policies that deliberately increase traffic 
congestion. We simply do not know.  

 

                                                 
63 Since the cars per capita increases with the GDP per capita, the mortality rate naturally decreases also, but we 
cannot conclude that this is a direct explanation.  
64 The source of Figure 20 is Tegnér (2004), based on www.worldbank.org/data/wdi2000/pdfs/tab3_12.pdf. 
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Figure 21.Recent evolution of road deaths in various countries 
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But the slide along the asymptotic curve might not be smooth. Many factors could signal a 
rise in road deaths: (i) the aging of the population of drivers; (ii) increasing impunity for 
illegal or dangerous driving, and not only when no-fault insurance systems are set up, as in 
Quebec, Canada, and Victoria, Australia, jurisdictions; (iii) increasing economic activity; (iv) 
the refusal to adopt a “pay as you drive” insurance system for consenting adults (insurers and 
drivers) based on some real-time GPS link allowing for the replacement of an average fixed 
premium rate by a marginal one (as in Table 14); (v) driving behavior that spends away the 
safety benefits provided by new automobile technologies or new information because drivers 
forced into safer vehicles attempt to maintain their desired risk level (or re-establish it). 
 
Below, we formally put the question of what best to expect if the accident determination 
structure is indeed conducted by the PIMCYÂ factors combined to a random term. 

7.2. The bottom up probabilistic road has fewer markers 

7.2.1. Demand models have paved the way to aggregation 
The explicit re-aggregation of results obtained with models based on individual observations 
requires, as seen in Section 6 of Part 2, data on the distribution of variables as well as the use 
of particularly complex elasticity formulas such as those found in manuals (e.g. Train, 2003, 
2007). The simulations proposed by Bolduc et al. (1993, 1994, 2012), remain an exception in 
that “bottom up” aggregators (from some 8 age groups) work back to population values. 

7.2.2. The multiple moments of an explained variable y 
In addition, other elements found in the practice of discrete models, such as Logit or Probit, 
differ from those found in aggregate models and differentiate them further: to this day, they 
only explain the first moment of the choice probabilities and never go beyond. For example, 
they show no interest in explaining the median probability or its asymmetry.  
 
It has been implicitly assumed in this state-of-the-art survey that regression models explain 
the first moment of the dependent variable y and no attention has been paid to more complex 
work putting emphasis on the explanation of higher moments of the distribution, such as the 
second or third. It is possible to characterize driving risk as choices among such moments of 



79 
 

road accident risk, as illustrated (Gaudry, 2006) in an application of seminal work by Allais 
(1987) demonstrating the relevance of all moments of a random variable to determine utility. 
 
One can easily understand why the Allais approach interests those studying other risks, such 
as gambling and lotteries where the use of the third moment of return is considered as critical 
(e.g. Pur…eld & Waldron, 1997). But, currently, only models of levels (all with aggregate 
data in our problem) have ever used a multiple moment approach: we have not found cases of 
Logit models where, say, the derivatives of the asymmetry (third moment) of the choice 
probabilities are calculated. So there might be lessons to be learned from finance as well. 

 
Indeed, road risk analyses combine mathematical complexity with an obsession for the first 
two moments and it is sometimes hard to tell which one plays a greater role: clearly, modelers 
can do better than the estimation of little expected utility models where the critically 
important third moment is ignored. In fact, the study of accidents should be a prime field of 
application for serious portfolio choice theory because driving choices are as frequent, 
complex and universal as financial choices ― if not more. 

8. Models and forecasts: toward an incompressible asymptotic limit? 

8.1. The relative roles of [ P, I, M, C, Y, Â ] and of random terms for 
forecasting 

8.1.1. The unavoidable systematic and random parts of models 
To better understand the future of modeling and the value of models in forecasting, let us in 
Table 13 rewrite the framework previously outlined and defined in detail in Table 5 (or in 
Table 6) by eliminating indexes, stating the vector of systematic factors [ P, I, M, C, Y, Â ]  
and combining for simplicity the accident frequency and severity dimension as [A-G]. 
 
We emphasize again that the vector of systematic factors contains economic activities [ Â ], 
the “fourth pillar” of road safety analysis, because transport is a derived demand. For each of 
the equations of the system, there is also a random term which can have more or less 
complicated properties, as discussed for instance in Equations (9-2) and (9-3) of Part 2 to 
classify aggregate models based on normally distributed final errors. 
 

Table 13. Simultaneous multiple-level road safety modeling structure 
 Dependent  Endogenous explanatory Exogenous explanatory Risk component 

1 [ DR-OCC ] ←  f d,o {          [ CC ] ; [ A-G ]*  ;  [ P, I, M, C, Y, Â ] 
d, o } exposure: kilometers 

and occupation rate

2-3 [ A-G ] ← f a-g { [ DR-OCC ]; [ CC ]    ; [ P, I, M, C, Y, Â] 
a-g } accident frequency 

and severity

4 [ CC ] ← f cc { [ DR-OCC ]; [ A-G ]* ; [ P, I, M, C, Y, Â] 
cc } driving behavior 

(care)
 

8.1.2. Is the uncompressible random part of the A‐G equations a natural rate? 
The rewritten table does not imply that explanatory variables are the sole source of our 
understanding because the random errors introduced in Part 1, and fundamental to the 
analysis, should be added to the table. In fact, the many models that explain accident by 
severity category have found, with both aggregate and count data, that the proportion of 
randomness tends to increase with the severity category under analysis. 
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Also, we believe that there always exists in accident occurrence a part that has nothing to do 
with the transportation network because there exists a point at which further investments in 
the safety of a network will yield no improvement in road safety whatsoever. Those working 
in the quantitative assessment of road safety should at some point be able to measure this 
bottom line beneath which all intervention to improve safety becomes ineffective. When 
accidents become neither predictable nor controllable, the issue is then whether the 
remainders are purely random.  

 
One view of this unresponsive component is that it partly corresponds to a natural rate of 
serious or fatal accidents (and perhaps of material damage ones as well). This vague idea is of 
something between pure randomness and responsiveness to safety investments: for instance, 
the built-in “quality” of drivers related to the age-sex structure could well determine a 
component of such a natural rate. The issue becomes whether all of the [ P, I, M, C, Y, Â ] 
factors, say for instance cultural attitudes to risk taking, are amenable to modification or not. 
On this point, what do international committees on road safety say about what can be done? 
After answering this question, we develop a view that seems more general and realistic than 
that of a natural rate: we will outline views based on conditional expectations. 

8.2. The twosided Wisdom of the World 
International committees on road safety policy have published numerous reports and 
recommendations. For example, some of the latest recommendations addressed to the 
European Ministers of Transport (CEMT/OCDE/JTRC/TS1/RD, 2006) dealt with two main 
issues: key safety variables and national road safety targets, an emerging topic.  

8.2.1. The four horsemen of the Apocalypse 
The international consensus on road safety seems set on the factors most likely to respond to 
intervention. All international reports involve the following four, always the same: two 
components of driving behavior [ CC ], speed and safety belts, and two components of [ C ], 
excessive alcohol consumption and risk taking among the young.  

 
A recent and most representative example (ITF/OCDE/JTRC, 2008a) is the result of a 
committee which sat for two years with two representatives of 21 countries and three 
international organizations. For the first time, three new variables were added to the original 
four65: the quality of the infrastructure and of related emergency medical services, contained 
in [ I ], and the importance of new vehicle safety technologies affecting [ M ]. The latter 
technologies are called active/primary (i.e., capable of affecting the probability of accidents) 
or passive/secondary66 ― typically built into automobiles and capable of affecting the 
severity of accidents ― such a speed limitation devices on heavy trucks.  

 
Similar reports systematically avoid addressing the issue of the “level of the sea” determined 
in large part by [ Â ] and the number of motorized vehicles in [ M ]: the “sea level” is 
indirectly dealt with through a study of simple trends which precisely avoid explaining the 
level itself. These fashionable trends are all linear and negatively sloped, as we now see.  
 

                                                 
65 The members of the committee did not define improvements in infrastructure e.g. road resurfacing. They did 
not raise difficult questions such as risk compensation following the adoption of new safety technologies. 
66 In insurance language, these corresponds to self-insurance expenses that reduce the probability of an accident 
and to self-protection expenses that reduce the severity of accidents. 
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8.2.2. Are national studies of safety targets placebo exercises? 
The most interesting aspect of the previously mentioned report can be found in the Annex 
(ITFOCDE/JTRC, 2008b) which deals with the recent hope of reducing the death rate on 
roads through the establishment of national targets. Strictly speaking, these targets are not 
forecasts but sorts of extensions of trends67, amazingly all linear and decreasing except in the 
case of three of the 40 jurisdictions involved, even when the sample includes a clear 
maximum or two maxima, as in the case of New Zealand (in 1973 and 1987)68 and of the 
United Kingdom (in 1969 and 1972)69. 
 
None of the 37 jurisdictions involved in the production of a section on their own data make 
use of turning curves or of polynomial trend estimators provided by Microsoft EXCEL. In 
addition, nowhere did we see rising national targets! We found a few tentative studies of trend 
breaks only in research work elsewhere (e.g. Antoniou et al., 2008). This means that we get 
national targets only if the trend is downward: upward trends do not exist. The trend also has 
to be linear even if this amounts to ignoring the existence of an obvious maximum. 
Recognition of maxima would require admitting we do not know much about the basic 
evolution of national road fatalities since 1965, and would surely call for explanations. 
 
Consequently, we wonder if those who appear to believe in national targets, such as 
Broughton et al. (2000), aren’t actually only saying that it is useful to superpose to an 
unexplained trend (also called “numerical context”) the effects of proposed regulations that 
can in principle be separately identified. We have not found statistical demonstrations of 
beneficial effects of national road safety targets but only discussions of specific national road 
safety programs designed to improve the overall performance of the transportation network. 
 
Proofs of the effectiveness of the adoption of targets would have to be established jointly with 
an explanation of the time profile of the evolution of fatalities (and more…) and demonstrate 
the value added of targets on a background where the Meadow/Matterhorn/Cervin peak has 
been made sense of and the shape of the slope and of the valley or plain assessed. A recent 
perspective on the latter is that of Vision Zero, proposed as a happy end to the story (if not of 
History…). 

8.3. Trends, asymptotes and Vision Zero 
What is Vision Zero? An objective, because knowing where one is going should be useful in 
getting there. But where is there and is it nowhere? Ideally, we all want roads, cars and drivers 
to be safe so as to bring the number of road casualties and accidents causing serious injuries 
down to zero. This is an ambitious program with wide repercussions, orienting planners 
toward the notion that the traditional balancing of mobility and safety on roads has become 
morally unacceptable (Tingvall, 1997, 1998). Just another slogan?  
 

                                                 
67 The only jurisdiction that has produced actual short-term (1 to 7 year) forecasts is the SAAQ (Société de 
l’assurance automobile du Québec) by using a structural model ― not by extending trends. For about 10 years 
after 1993, the SAAQ developed the DRAG-2 and DRAG-3 models for monthly forecasting purposes (Fournier 
& Simard, 1997, 1999, 2000). As a governmental body with a monopoly on insurance for accidents causing 
bodily injury, the SAAQ is compelled to publicly document its official model use, a task performed in this case 
with over 1000 pages of public documentation (Gaudry et al., 1993-1995). 
68 Surprisingly, Stipdonk et al. (2005) use a monotonic curve to describe the New Zealand “trend” with a sample 
that covers the years 1980 to 2005 and contains multiple maxima and a peak. 
69 Sweden, which has two maximum years with comparable numbers of fatalities, is not among the 34 
jurisdictions whose national targets were part of the preliminary version of the report we examined. 
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Vision Zero ignores entirely new automated transport systems like podcars (PRT) that, while 
respecting present freedom of movement, would substitute safe equipment and computer 
algorithms to unsafe vehicles and high-risk drivers. While we wait for major technological 
breakthroughs and their market implementation, Vision Zero concentrates on what seems 
available like planned active safety70 technologies being included in cars built today. In fact, 
the plan of Sweden’s Ministry of Industry, Employment and Communications (MIEC, 1999), 
approved by Government in 1998, included 11 means, some more concrete than others, 
presented as a smorsgasbord that includes the “Forgiving Highway”71 in a long and 
heterogeneous list72. 

8.3.1. A Land of Cockaigne 
Unfortunately, in order to create such a paradise on earth, every part of the transportation 
system would have to work perfectly, at the highest level of efficiency and at immense cost. 
Zero Vision does not take costs into consideration; but costs are, of course, at the very center 
of automobile design, of road design and construction, of quality control on roads and on the 
whole transport network. For example, railway and subway car designs are often approved on 
the basis of a frequency-severity trade-off assessed by simulating real conditions. Thus, 
implicitly, the outcome of the trade-off is decided by established standards and by the cost of 
implementing them. 

8.3.2. How far are we from Vision Zero? 
What were the effects of the adoption of Vision Zero in Sweden? The official brochure of the 
Swedish Road Administration (SRA, 2006) simply states that “since the adoption of Zero 
Vision [in 1998], the death toll on Swedish roads has declined”. On the other hand, 
international experts (Breen et al., 2007) argue the opposite: that the death toll has increased 
since the adoption of the policy. Let us look at some hard facts in Figures 22 and 23.  
 
The series presented in both graphs indicate that the number of deaths since 1998 (official 
year of the adoption of the Zero Vision policy) has remained stable. The cumulative variation 
of 12 in the number of persons killed on roads between 1997 and 2007 (included)73 suggests 
that a break in the downward trend occurred before 1998. Moreover, the death toll increased 
by 8% between 2005 and 2007 and then fell to 397 in 2008 and 358 in 2009. Was the 2007 
value a final spurt (472 dead and 4 000 injured) before the financial recession and crisis of 
2008? The data shown in Figure 22 and the slowing down of improvements shown in Figure 
                                                 
70 This comprises the use of sensors keeping drivers awake or correcting the trajectory of a car on a collision 
course or automatically putting the brakes on (keeping the car stable) to prevent an accident sensed by the car’s 
front and rear sensors. Some of these devices are both passive and active. The Limitator or LAVIA (Limitateur 
s’Adaptant à la Vitesse Autorisée) can both tell the driver what the speed limit is on the current road and actively 
act upon the car’s speed (Ehrlich, 2006).  
71 The Forgiving Highway is built to redress driving mistakes. For example, France has cut down trees along 
roads (which accounted for 10% of the casualties in the early 2000’s) in this perspective.  
72 According to the report written by experts Breen et. al. (2007), “The 11 points proposed in the plan included: 
1. Identifying and treating the most hazardous road sections; 2. Making traffic safer in towns, by rebuilding 
streets according to the design principles of Vision Zero; 3. A stronger emphasis on the responsibility of road 
users; 4. Safer cycling, especially through means of promoting helmet wearing; 5. Safety audit of transport 
services purchased by the public sector; 6. A law requiring the use of winter tires on slippery roads in winter; 7. 
Exploiting Swedish technology to make motor vehicles safer; 8. Codifying the responsibility for safety of those 
who design the road transport system; 9. Reassessing penalties for traffic law violations; 10. Clarifying the role 
of voluntary associations and organizations working for road safety; 11. Experimenting with new systems for 
financing new roads.” 
73 In particular, the number of deaths of the motorized two-wheel category has increased from 50 to 80 per year 
from 1997 to 2004. 
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23 point to a state of stagnation. It would appear that Sweden’s Vision Zero objective has not 
progressed much since its adoption. Will the same thing happen elsewhere?  
 

Figure 22. Annual number of road deaths in Sweden over 58 years (1950-2007) 
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Figure 23. Year-to-year change in road deaths in Sweden over 57 years (1951-2007) 
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The question is then whether there is really an end-point, or limit, to the evolution of all 
national safety aggregate indicators, and notably of fatalities. To answer it, one needs to place 
Vision Zero in a wider modeling context by taking into account both random effects and the 
more systematic ones included in PIMCYÂ. We will retain some link to other statistical fields 
where the use of a “natural rate” is common practice in countries where these rates are 
considered as incompressible, at least for unemployment; but we will try to make use of what 
models teach by pointing to hard cores in many of the factors. 
 
8.3.3. Systematic effects lurking above any fundamental randomness or natural rate 
At first glance, a natural rate of road “insecurity” would correspond to the random side of the 
model: by definition, it is not compressible and resists regulation. It has been mentioned 
above that the role of randomness is more important in fatal accidents than in accidents with 
injuries: a natural rate would be the level implied by severity-specific randomness. But what 
then happens to the systematic “regression component”? How do values progressively reach 
the random level? The regression component has to be a part of a reasonable answer. 
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To be practical, we ask simply if it is feasible to reduce by a factor of 10 the number of deaths 
on roads in, say, France, from the peak just below 20 000 of 1972. A toll of 2 000 would do 
and (adjusted for population) match the 1 400 level caused by horse-drawn carriages before 
the war of 1870, as shown in Figure 2 of Part 1. A toll of 2 000 implies a 60% reduction from 
the level of 2005 and a 50% reduction from the value of 4 000 experienced in 2010 and 2011. 
What do the systematic model components tell us about the possibility? 

9. Conditional expectation of national tolls: 10% of the 1972 peak for 
France and others? 
The PIMCYÂ variables listed in Table 13 “displace the random term”: they constitute the 
“regression component” already lurking in the Bortkiewicz analysis of horses’ kicks, as 
discussed in Part 1, and made no less important by the advent of motor-powered vehicles. 
Consequently, a discussion of road safety performance perspectives within the framework of 
multivariate modeling naturally requires that we first look at the first moment of national 
performance indicators and more precisely, at their conditional expected value: 
 
(17) { Expected value of [road safety indicator] }←{ f ( PIMCYÂ; randomness term) } 
 
This simple formulation is easily understood in an aggregate model, including those where the 
dependent variable is subjected to Box-Cox transformations. It also has a precise analytical 
meaning in Logit-type models (12)-(13) where it is defined by a function of the denominator 
of the share or probability of potential outcomes forming the relevant support of an expected 
maximum insecurity (EMI) measure74. In all models, both aggregate and discrete, PIMCYÂ 
explanatory variables must be given values (or even a distribution of values) for the expected 
performance to be calculated. Instead of discussing hard core limits for each category of 
variable, we approach the matter by theme. 
 
Public policy influences expected road safety performance but so does the driver’s 
compensatory behavior and, even more so, the demand for transportation derived from 
economic activity, and the prices involved. As each of these three dimensions intersects with 
many of the PIMCYÂ sets of variables, we structure our discussion accordingly. This 
approach raises the main issues which all forecasting models have to face and stresses the 
relative importance of the factors, whether one is interested in the possibility of dividing 
yearly fatalities by a factor of 10 or in finding a solution to growing global road death toll.  

9.1. Expected road safety performance and the political market 
The political market has multiple effects, notably: on [ P ] with taxes on vehicles and on gas, 
fines and road tolls, the imposition of compulsory insurance and the setting of premium price 
structures (sometimes capped and twisted for political reasons); on [ I ] with road standards, 
speed limits, Highway Codes and traffic flow management; on [ M ] with technical standards 
for vehicles and their use; on [ C ] with access to driving permits, licenses and other access 
requirements (e.g., medical conditions; Blood Alcohol Concentration), and on [ Y ] by driver 
education and the handling of serial infractors. 
 
But instead of considering all these wide-reaching means of intervention, the forecasting of 
regulation is often limited to the four Horsemen of the Apocalypse. The wider problem is 

                                                 
74 Gaudry & Vernier (2000) applied this notion, analogous to the Expected Maximum Utility (EMU) commonly 
found in Logit mode choice models, to the frequency and the severity of road accidents. The denominator is 
subjected to a Box-cox transformation, a special testable case of which is the Logsum. 
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indeed one of forecasting the political market on many more points: for instance, restrictions 
on engine horsepower or speed, the imposition of day time running headlights and control of 
motorcyclists75 are primarily political issues, and have a limited technical dimension, in 
contrast with say noise and emission standards. If this is the case, who is at the wheel? 
 
The application of political economy theory to road safety is not frequent. A promising76 
testable hypothesis suggested by many researchers to explain the evolution of safety 
regulation, speed limits, technical standards77, insurance systems and fines, is that the median 
voter is in fact at the wheel. Let us examine the political scene that seems to have such an 
influence on road safety policy and regulation. 
 
What can be expected from government policy in support of the objective of a reduction by a 
factor of 10 of the peak number of accidents? How flexible are government interventions in 
democratic countries? We discuss regulations in order of increasing feasibility. 

9.1.1. Constitutional constraints as immovable objects 
Democratic societies impose some immutable limits to regulation: those of equal rights, for 
instance. Building a road where one could guarantee to halve the casualty rate by allowing 
only men and women drivers between the ages of 35 to 45 (see Figure 7.A in Part 1) is 
unthinkable in a democratic society. Even if such a road were profitable and self-financed, 
democratic governments would have to amend their constitutions to allow it. 
 
Now, would the median voter agree to this idea? More often than not, amending a constitution 
requires the agreement of a majority of voters and sometimes even of two thirds of them. In 
addition, political moves would make the process of constitutional amendment very slow and 
all but surely kill such a road project. Equal treatment can therefore stand in the way of more 
expensive, but safer roads: relatively safe drivers have no choice but to share the road with all 
of those who are allowed on it by the unforgiving tyranny of the median voter. 

9.1.2. Regulations subjected to short term modification 
In democratic societies, there are some limits to the flexibility of allowable regulations and to 
the ease with which they can be modified. Consider for example, the criteria of admissibility 
to a driver’s license, a factor that greatly influences the average safety of the stock of drivers: 
obtaining a driver’s license is not a constitutional right but is regulated by political decisions 
through the setting of access criteria (age, medical condition, etc.). 
 
To use again an example based on average age-sex differences, could a government use an 
“age-sex envelope approach” and put strong constraints on the licensing of young men and 
old women to favor young women and older men (see Figure 7.A)? It is difficult to imagine a 
politician bolder on such a point than what the median voter may think is acceptable. For 

                                                 
75 For instance, passing between cars is forbidden to motorcycles in Canada (the country of snow), authorized in 
California (Hell’s Angels’ territory) and tolerated in France. 
76 Laurent Carnis, of Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des 
Réseaux (IFSTTAR), has suggested that the evolution of regulation since 1970 be studied with the median voter 
model (in the context of the rise and decline of the baby boom) as the main hypothesis. 
77 Generally speaking, transportation experts do not consider compulsory vehicle inspection and maintenance 
regulations to be anything other than local job creation programs. Fosser (1992) has shown with refined data, 
that there is no link between accidents and the frequency of inspections. With aggregate data, Loeb (1988) has 
found favorable effects in some U.S. states. Tegnér (2000), using monthly time series for Stockholm, found that 
an increased proportion of vehicles with faulty brakes was associated with a rise in bodily injury accidents. 
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instance, should there be opposition by motorcyclists to day time running headlights, some 
politicians will trade the saving of unidentified lives (by an effective and cheap policy) 
against identifiable vocal votes: sometimes, no profit is too small. 

9.1.3. Unstable regulations: speed limits and automotive fuel taxes 
The behavior of drivers [ CC ] is a critical safety factor, but speed limits are accepted by slim 
majorities of voters, as demonstrated in the USA where the 51 States change them frequently. 
The same holds for automotive fuel excise taxes, like the new regional levy78 introduced in 
France in 2007: it can be predicted to change often (within the central government imposed 
limits) because the median voter changes with each regional election campaign: Grabovski & 
Morissey (2006) have counted 253 fuel tax changes in the U.S. from 1982 to 2000. 
 
In countries with decentralized authorities, speed limits and taxes on fuel are then unstable 
and can be better explained by yo-yo theory than by theories on spinning a top or on long-
term national “good intentions” or targets. In other words, they cannot be relied on to 
consistently help reach higher safety targets. 
 
In addition, should the foreigners’ rent on oil rise, some local and central governments will 
choose to reduce the domestic tax on fuel rather than raise it and increase revenue at the 
expense of countries that are not all our friends. Current chances are that, the scarcer and 
dearer fuel becomes, the more governments will try to keep its price at the pump low. 
Governments easily forget that fuel taxes are specific user charges (Prest, 1963) and that the 
highway network cost recovery rate is often insufficient, especially for heavy goods vehicles, 
a situation that could and should be redressed79. Consequently, governments will refuse to 
transfer the oil rent from foreigners to national budgets because median voters prefer their 
cars to national energy autonomy, the capture of oil rents and better terms of trade.  

9.1.4. Instant and dubious regulation: taxing energy‐consuming vehicles 
Instant regulations may well be the fastest and easiest government measure to implement. For 
instance, Canada, Spain, France and other countries have in the last 5 years or so imposed a 
tax on the sale of “high consumption” vehicles. This decision, which might still have some 
consequences on road safety that cannot yet be discounted, seems to have been taken pretty 
much without public knowledge or debate, almost furtively. Given the fact that many other 
countries are planning to adopt similar measures, let us examine its effect.  
 
Citizens buy heavier vehicles, supposedly safer that than the average ones, it could often be 
because they perceive the risk of driving to be excessive in lighter vehicles or simply because 
they want to move large families. There are indications that this safety motivation might 
decrease if some recent U.S. findings (IIHS, 2011a) pointing out that the aggressiveness of 
minivans and sports utility vehicles relative to that of cars has decreased considerably for 
recent vintages (2008-2009 model years) due to greater homogeneity in safety design: the 
“externality” argument is reduced even if some clear advantages of weight linger on80. 
 
                                                 
78 In France, the former name of the fuel tax, TIPP (Taxe Intérieure sur les Produits Pétroliers), was changed in 
2011 to TICPE (Taxe Intérieure de Consommation sur les Produits Énergétiques) but the regional ad-on were 
maintained: in 2011, 17 regions used the maximum supplement of 2,5 eurocents per liter of diesel or gasoline 
allowed by the central government, 2 used none and 3 applied a compromise rate. 
79 There exist cost recovery rate summaries by user class for North America (Gaudry, 2005) and France (Gaudry 
& Paul-Dubois-Taine, 2009). 
80 For instance, heavier hybrids seem to protect their passengers better but pedestrians less well (IIHS, 2011b). 
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Concerning then the taxation of larger vehicles on the basis of their production of greenhouse 
gases, France and Spain ― where heavy vehicles happen to be foreign ― pretend to tax the 
sale of these vehicles for environmental reasons. The problem with this argument is that 
greenhouse gas (and pollution) emissions are proportional to energy consumption: to reduce 
GHG emission levels, honest-talking governments should logically only tax fuel. 

9.1.5. Road safety and the median voter 
To try to model the link between the behavior of the median voter and the establishment of 
safety laws presents problems, not the least of which is the asymmetry between the law (based 
on the median voter) and the risk of accidents (often based on marginal or extreme drivers). 
The median driver is not the one who determines the safe distance between cars or any 
acceptance gap for that matter: it is the driver who is willing to take the greatest risk, 
irrespective of the law. As a result, it can be said that the marginal or extreme driver is the 
target of policies defined by the median driver, which is hard to model. 
 
When speed limits are changed, the asymmetry of the distribution of individual speeds 
changes more that the mean or the median of the distribution: what will then be decided if the 
median wags both the asymmetry of the distribution and its mean simultaneously? It is hardly 
logically possible to change the asymmetry of the distribution without affecting the median 
(and the mean and the variance): this presents non trivial logical challenges to the 
maximization of utility. Mean preserving spread models then appear as easy (one can vary the 
standard error without affecting the mean) but singularly inadequate and out of touch. 
 
The political market is also a challenge to road safety modelers because government 
regulations are unstable and can have ambiguous effects. For instance, the installation of 
lighting on relatively low-traffic road sections (including highways) is generally thought to 
lower mortality and morbidity rates, at least at low traffic densities81. This is explained by the 
fact that speed limits keep drivers from switching back to the risk level that they would have 
chosen in darkness. If this is true, it is the combination of lighting and speed limits that saves 
lives, not the lighting by itself. How can one model the way the political market will decide 
where and when the lights are kept on? 
 
What can be expected of the evolution of regulations subjected to the vagaries of median 
voter moods? It would appear that the latter’s demand for risk seems stronger than any 
reasonable value the Vision Zero objective can ever expect to set, let alone reach. This is what 
the author Albert Camus called “the bloody mathematics of our condition”82. 
 

9.1.6. The expected death rate is conditional on policy choices 
Within our hypothetical medium-term objective of reducing by a factor of 10 the number of 
deaths on roads, what can generally be said about the influence of government policy on road 
safety management? The famous Duclos had a lot to say on the subject in 1759 (p.24): 
 

                                                 
81 Some experiments are currently in progress on some highways of the Paris region where there are some 
reasons to think that this might not hold at high flow rates, as was apparently discovered when the theft of 
electrical wires turned out the lights on some highway sections. 
82 From: The Outsider (L’Étranger, 1942) by Albert Camus who coined this expression and, ironically, died in a 
car accident. 
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“[…] Government, badly served, gets more and more into debt & becomes incapable of 
paying-up unless it changes. Chaos follows: a necessary expense is postponed in favor of 
useless but anticipatory ones, because debts and favors abolish all barriers. 
 
That was the case of the “Ponts et Chaussées” in France in 1726, when, calling them hard 
times, M. Dubois sought to reduce influence peddling and other abuses of power”. 

 
Now that the demographic baby bust wave is passing, who is the new median voter? On the 
one hand, higher standards of living and education appear to increase the demand for safety 
everywhere at a rate higher than the increase in average income. On the other hand, higher 
living standards are often accompanied by increasing laxity in the education of the young and 
by an overall decrease in holding individuals responsible for their acts. Thus, at best, we can 
hope for a weak trend toward weak regulation of very dangerous drivers, inasmuch as safety 
remains a superior good for all, including the median voter who seeks protection from the 
asymmetric tail of the distribution. 

9.2. The complexities of individual risk compensation 
This notion of compensation means that, when regulation standards or constraints are 
imposed, drivers automatically produce compensatory behavior designed to, partially at least, 
reestablish their desired level of risk. Thus, in the short-term, compensation is expressed by 
driving behavior in [ CC ] but, in the long-term, it is probably strongly expressed by the 
safety equipment and devices choices in [ M ], and even in the demand for exposure [ DR ]. 
 
Compensation usually involves a distinction between reactions to technological change and 
reactions to price changes. The notion of strict compensation, i.e. of compensation exactly 
equal to the gain, was rejected by Smeed (1949)83, reformulated by Peltzman (1975), an 
American economist, and popularized by Wilde (1976, 1982), a Canadian psychologist, under 
the term “risk homeostasis”. The notion evokes a trade-off among first moments of random 
variables but, in the absence of a strict definition of risk (that would presumably involve 
higher moments, and notably the third) and of a distinction between risk and uncertainty (used 
for instance by Gaudry & Vernier (2000), inspired by Knight (1921), remains intuitive. 

9.2.1. Compensation following technological changes 
Economists would say that technical innovation (in cars and safety devices) cause ― as do 
variations in price ― a restructuring of the purchased basket (containing substitutes and 
complements) and a change in the size of the basket (just like an income effect). But how will 
drivers react to compulsory new safety devices in cars or to the implementation of new safety 
standards? How much are they willing to accept? And how will they spend their newly 
acquired higher (and sometimes imposed)84 standard of living? Will they seek to reestablish 
the former level of risk: will the additional safety imposed upon them result in a net gain? 
 
The notion of compensation is both hard to define and difficult to verify. It implies notably 
that a government forcing drivers to buy safer vehicles, or vehicles in better conditions, will 
have an impact on the speed at which they drive [ CC ]. We are not talking here about the 
drivers’ ability to understand the new regulation but are concerned with drivers’ reactions to 
regulation such as compulsory seat belts or shoulder straps, helmets or safer vehicles. 
                                                 
83 «I see no reason why this regressive tendency should always result in exactly the same number of accidents as 
would have occurred in the absence of active measures for accident reduction.» 
84 During a conversation with one of the authors, Reuven Brenner of McGill University noted that compulsory 
safety standards lower the cost for all and that everyone gains. The issue is then how this unexpected or imposed 
gain will be spent. 
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9.2.2. The seeming beginning of the compensation debate 
The improvement of the safety of vehicles is not a recent85. Seat belts were added to the 
Renault Dauphine in 1956 ― it became the most sold car in France in 1961 ― and recent 
models are now equipped with dynamic stability systems. Safety improvements have a long 
history highlighted by a few landmarks such as retractable bumpers capable of resisting small 
collisions (varying from 5 to 8 km/hr) and safer windshields. In fact, if one cumulated all of 
the safety gains each technological modification was supposed to produce over the last 50 
years, the result would imply a negative number of deaths on roads to-day. 
 
The underlying static but typical forecast of potential gains obviously does not take 
compensation into account (e.g., Joksch & Wuerdemann, 1972, 1973). It works on “fixed 
coefficients”. Look at what is being discussed these days in Europe where it is said: that if 
“the just before collision” speed was reduced by 15 km/h, the number of deaths would be 
halved (Tingvall, 2008); that electronic stability systems would reduce the death rate by 17%; 
that systems designed to bring stray cars back to the centre of lanes would reduce the death 
rate by 15% and that speed alarms would reduce deaths by 15% (VTT, 2008). The point of 
forecasting is not to add all these “fixed coefficient” percentages but to find out if the drivers 
will driver faster, thus taking more risks, if their vehicles are more “intelligent” and safer. In 
an economic system of supply and demand, a price change generally causes consumers to 
substitute one good for another, but the substitution is never complete. 
 
Unfortunately, all the gains in safety implemented since 1955 have not produced their 
expected result. Why is this so? Everybody knows that consumers demand safety equipment 
and pay for it freely (e.g. Winston & Mannering, 1984) even when imposed by regulation. 
The problem we need to address is the following: how are gains in the potential safety of 
vehicles spent? Is new windfall “income” applied to reestablish previous levels of risk? Since 
measuring compensation directly with real speed changes is difficult, modelers adopt an 
indirect approach. They study behavior (e.g. Sobel & Nesbit, 2007) or the changes in the 
frequency or severity of accidents that come with a given specific safety device or other 
(Winston et al., 2006); or they look at vehicle registration dates and compare “before and 
after” safety improvements (Broughton et al., 2000). Modelers also studied the frequency of 
rear end collisions after the installation of cameras at traffic lights (Obeng & Burkey, 2008). 

9.2.3. Conditional severity of accidents and the year of first registration of 
vehicles 
How are we to demonstrate the presence of net safety gains after the installation of safety 
systems in vehicles? The analysis proposed by Broughton et al., (2000), in Annex A of their 
study, seems both intuitively plausible and promising. Their study is based on the following 
observation: in tallies of accidents that occurred in Great Britain over the years (1981-1982; 
1988-1989; 1995-1996), the proportions of both drivers killed P1 and drivers killed or 
seriously injured P2 over all drivers killed and injured in a given year tend to increase with the 
age of the vehicle. Moreover, this trend shifts downwards the closer one gets to more recent 
accidents (in this case 1996). Does the influence of safer vehicles appear slowly but surely? 
 
The linear Logit explanation provided by the authors for the proportion of killed P1 and that of 
killed or seriously injured P2 (i) assumes that the age of the vehicle is not a factor that 
influences the probability of death or injury (no compensation); (ii) explains P1 and P2 by 

                                                 
85 The first safety-related regulation may have come in 1956 when the U.S. government ordered car 
manufacturers to install locks than prevented drivers from being ejected in an accident. 
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taking into account the age of the vehicle and the year the accident occurred, in addition to the 
type of road (urban or rural) and the age and sex of the drivers. 
 
Unfortunately, it also fails to take into account the 69% increase in traffic86 that took place 
between 1980 and 1998 on already congested roads. We will show later, for Norway, that the 
decrease in mortality and severe morbidity rates (and the reverse increase in light morbidity) 
may be simply explained by heavier traffic, or what is called the “benefits of density”, which 
in England would be properly be called “congestion” given the fact that the country has the 
most congested roads of Europe. The observed trends and shifts might just reflect lifesaving 
congestion and gridlock which prevents drivers from reaching their desired risk level.  

9.2.4. Reacting to price and fines 
Where does that lead us? All regulations are not created equal: some do not trigger 
compensatory reactions in drivers. Generally speaking, fines and varied financial penalties 
affect behavior in ways that do not cause the driver to compensate to recover the same level of 
risk as before the traffic violation. Since drivers are sensitive to the amount of fines, increased 
fines or changes in the insurance system produces reactions (Rea, 1987) generally easier to 
detect than reactions to technical changes (Gaudry, 1992; Krupp, 2005). The price of fuel and 
the cost of insurance premiums have a large impact on speed and risk taking. A good example 
of this is the experiment undertaken by Great Britain’s Norwich Union insurance company 
which, starting in 2006, tested a real time (GPS-based) variable marginal cost-type insurance 
policy ― as opposed to a fixed premium policy: it was reported (Crampton, 2007) to have 
produced87 a strong reduction in the number of accidents, particularly those involving young 
drivers at night and on weekends. 

9.2.5. The expected number of accidents is conditional upon compensatory 
behavior 
Overall, researchers expect partial compensation for all technological safety gains, no 
compensation for fines and high levels of compensation in reaction to insurance systems 
based on marginal cost pricing. The latter has been strongly advocated by experts since 
Vickrey (1968). Table 14 shows that the rating tried by Norwich Union closely resembles 
such a system: finally, a measure with large expected gains! 
 

Table 1. Cost of home bound leg of trip for drivers aged 24 to 65 (Norwich Union) 
 2,3 miles on 

single lane road 
1,2 miles on 

highway 
2,6 miles on 

single lane road 
2,3 milles on 

highway 
TOTAL 

10,7 miles 
Off-peak    9.2 pence 1.2 pence 10.4 pence 16.1 pence 36.9 pence 
Peak: 23h00 to 6h00 13.8 pence 1.8 pence 15.6 pence 27.6 pence 58.8 pence 

 
We have not documented the large literature on insurance régimes, which includes major 
issues such as compulsory insurance and pure no-fault (abolishing the tort system), or the 
growing refusal of legal discrimination on the basis of sex and age. Changes in insurance 
liability frameworks predominantly cause parallel shifts in safety indicators that affect the 
level of any asymptotic limit. But shifts are precisely what is expected of possible measures 
such as per kilometer insurance pricing, on a background tide level driven by the economy. 
 

                                                 
86 Gas consumption increased by 16% and diesel fuel consumption by 120% over this period. 
87 Contact made with the company to understand why the experiment was abandoned were unsuccessful. In an 
imperfectly competitive industry where mark-up determined profits exist, safety measures that decrease the 
volume of business might be very difficult to implement. 
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9.3. The economy, transport and road accidents in the shortterm 
That the demand for the transportation of people and goods is derived from economic activity 
is a fact we cannot ignore: we named it the “fourth pillar” in Part 2. In order to determine the 
specific demand made on roads and the loading intensity of vehicles on the network, all 
dimensions of which in [ DR-OOC ] are of capital importance in explaining [ A-G ]. This is 
seen symbolically in Table 13 and in reality throughout the evolution of aggregate modeling: 
the overall demand for transportation and the modal choices resulting from economic activity 
are unavoidable. 
 
No matter the preferred model structure, it is necessary to explain the number of freight and 
passenger vehicles in use [ DR ] and the intensity of this usage [ OCC ]. It is clear that 
limiting the analysis to government regulation and to drivers’ compensatory behavior will not 
suffice to forecast road safety performance. 
 
Even if accidents just happen and if not all ships sink, we still need to know how many 
vehicles there will be (the level of activity, or tide) and their loadings. A model that does not 
correctly take exposure [ DR-OCC ], be it the explained or explanatory, into consideration 
lacks an engine, as pointed out in the discussion of some discrete accident frequency models 
in Part 2. Let us first look at [ OCC ] and [ DR ] through the lens of a short-term model. The 
medium-term and the inevitable and critical role of economic growth will be discussed later. 

9.3.1. The car occupancy rate 
How should one interpret Smeed’s model? Let us first restate it as a function of the rate of 
occupancy of vehicles. This amounts to replacing the explanatory variable by its inverse in 
equation S-1 of Table 3. The result of this substitution, seen in equation C of Table 15, shows 
after some trivial manipulation the number of casualties to be proportional to the size of the 
fleet and infra-proportional to the occupancy rate (or load factor) of the vehicles. 
 

Table 15. Reinterpretation of Smeed’s model and addition of speed and density effects 

Smeed’s (1949) equation S-1 rewritten in terms of OCC, the occupancy rate of vehicles  
S-1 (Killed/Vehicle) =  ka • (Vehicle/Population) – 2/3 A 
 (Killed) =  ka • (Vehicle) • (OCC – 1 ) – 2/3 B 
 (Killed) =  ka • (Vehicle) • (OCC)  2/3 C 
Nilsson’s (2000, 2004, 2005) equation re-estimated by Elvik et al. (2004) 
 (Killed) =  kv • (Speed)  4,5 D 
Combining equations C and D and adding an hypothetical Speed-Density conjecture 
 (Killed) =  kav • (Vehicle-km) • (Speed)  4,5 • (OCC)  2/3 E 
 (Killed) =  kav • (Vehicle-km) • (Speed)  α • (Density)  β• (OCC)  γ F 

 
Given that this new formulation is the product of various variables explaining the number of 
casualties, the elasticity of this number with respect to fleet size is calculated by summing the 
elasticities of each term, in this case equal to the coefficients: [ 1 + (-2/3) = 1/3 ]. In Smeed’s 
model, an increase of the fleet would thus imply a proportional effect linked to vehicles, that 
can be interpreted as a frequency-exposure effect, and an infra-proportional effect linked to 
the occupancy rate interpretable as a conditional severity effect. Assuming that the mileage 
per vehicle is constant, the line C explanation in Table 15 allows a modeler to artificially 
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associate one-to-one the frequency level to the size of the fleet and the morbidity rate to the 
occupancy rate [ OCC ]; and similarly for other bodily injury classes of victims. 
 
What are then the conditions under which an increase in the number of vehicles on the roads 
and a corresponding identical percentage decrease in the occupancy rate imply a less than 
proportional variation of the number of deaths, i.e. a “decreasing marginal rate”? In other 
words, the problem is to understand how the transformation of passengers into drivers reduces 
the number of victims by vehicle: two people driving one kilometer in the same car would 
produce a higher death rate than two people driving the same distance in two separate cars. Is 
this a questionable dream? 
 
A first interpretation of this stunning result of increased fleet size [ 1 + (-2/3) = 1/3 ] amounts 
to saying that, given constant speed, the lower car occupancy rate reduces the morbidity rate 
of accidents that might still occur as often as before per kilometer driven because higher 
occupancy of vehicles increases the chance of bodily injuries at a constant speed. Less strictly 
stated, the interpretation is of a morbidity rate decrease that offsets the vehicle-km exposure 
effect to yield total casualties increasing less than proportionately to increased fleet size. In all 
cases (whether the frequency elasticity of fatal accidents per vehicle-km remains constant or 
presumably falls), it attributes a major offsetting role to the load factor, a variable which has 
not been much studied specifically by modelers.  

9.3.2. The unobserved speed 
Another way of interpreting this surprising result is to bring the speed of vehicles into the 
analysis; and we shall see that this could even result in decreases in fatalities. To do so, let us 
look at Table 15. It presents a simplified version of the equation Nilsson formulated in various 
Swedish reports that predate the better-known 2000 version (also found in his dissertation of 
2004). His original power values presented in Figure 24 were further refined by Elvik et al. 
(2004).  
 

Figure 24. Relation between speed and number of road casualties (Nilsson, 2000, 2004, 2005)  
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This second interpretation is plausible because Nilsson’s “Power Model” does not distinguish 
between the effects of speed on the frequency and on the severity of accidents. It thus simply 
consists in (i) attributing the desired effect to a change in speed; (ii) simultaneously implicitly 
denying that the joint probability of death is lower if two individuals drive the same distance 
in separate cars than if they drove together. 
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In fact, the issue becomes whether the gain in safety attributable to increased fleet size results 
not only from lower frequency and severity rates at constant speeds but also from lower 
frequency and severity rates due to speed, both more than offsetting increased exposure 
effects. If, as many believe, equation D in Table 15 shows the net effect of speed, a slight 
reduction in speed88 is sufficient to produce a major reduction in the number of deaths even if 
the conditional frequency and severity rates associated with the occupancy rate remain 
unchanged. 
 
So then, why would people slow down when there are more vehicles on the road? It is a fact 
that in OECD countries where fatalities peaked in 1972-1973 the share of public investment 
expenditure on highways started falling in 1967, long before the fleet size shift (increase) that 
started in 1970. The latter trend break led OPEC to raise the price of oil in October 1973. 
Slight increases in traffic density may well have caused decreased “free flow” speeds over 
and above their effect on congestion levels proper. The high speed exponent (Nilsson’s 
original number or the higher value of 4,5 recommended by Elvik et al., 2004) is sufficient to 
explain that safety gains (benefits of density) can be obtained from small increases in traffic 
density, irrespective of other factors. 

9.3.3. Using density as a proxy for unobserved speed 
FridstrØm (1999, section 6.7.1), for one, designed a model that distinguishes the effect of 
traffic volume from the effect of traffic density and found an elasticity of bodily injury 
accidents with respect to traffic volume of 0,91 and with respect to traffic density of – 0,42. 
This is a “meso-economic” density, by county, for basically uncongested roads: we know that, 
at the road link level, an increase in density will ultimately lower the sum of the two 
elasticities because the microeconomic frequency-delay or cost-delay curve relationship on 
road links is of a reversed-U shape89 illustrated in Figure 25 (Gaudry, 2000, Figure 1.3), as 
demonstrated by Cohen (1980) in his Masters’ thesis and used (in strict quadratic garb) for 
intersections of (2x2) = 4-lane urban roads (Persaud & Lyon Inc. et al., 2009). 
 

Figure 25. Volume-Delay and corresponding Volume-Accident curves 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
88 Thus, in the U.S., the falling number of deaths (absolute and per capita) by cohort (Evans, 1993) can be 
explained by this effect and by the effect of the average rate of occupancy of vehicles. Driving experience is not 
taken into account. It is a notion best studied by more disaggregate methods as in Bolduc et al. (1993, 1994, 
2012) where collinearity between age and experience might be more manageable than with more aggregate data. 
89 One can easily imagine, close to the origin, a different form whose angle defined by the abscissa and a straight 
line meeting the frequency curve implies first an increasing slope and later a decreasing one.  

A. Volume-Delay curve B. Volume-accident curve 

Number of vehicles per unit of time

The scale used in B corresponds only approximately 
with that used in A

Number of vehicles per unit of time

Ti
m

e 
pe

r v
eh

ic
le

 

Average 
time 

N
um

be
r o

f a
cc

id
en

ts
 

Fatal Injury 
Material 

  Marginal Time  



94 
 

 

Figure 26. Relation between bodily injury accident risk and traffic density, Norway, 1974-1994 
 

 
 

If FridstrØm’s elasticities were measured at sample means by a sophisticated non-linear 
flexible form model that readily allowed for the distinction between the effect of volume of 
traffic and the effect of the density of traffic, this crucial distinction is ignored90  in simpler 
regression models such as Edlin & Karaca-Mandic (2006) that only explain the average cost 
of damage by density: they implicitly obtain a sum of the two elasticities estimated by 
FridstrØm, the second of which is illustrated in Figure 26. 
 
Figure 26 illustrates, even more clearly than the overall elasticity value of –0,42 can do, the 
impact of density on bodily injury accidents. As congestion is rare on the roads of the 19 
Norwegian counties91 from 1974 to 1994, the model no doubt yields results for the “free 
flow” part of the volume-delay curve shown in Figure 25. The “benefit of density” is the 
gradual reduction of the frequency of accidents per car-km represented on the B part of Figure 
25 where, beyond the maximum, the absolute value even falls92. 
 
It is now up to researchers to determine, based on line F of Table 15 showing the extended 
model, the respective roles of the occupancy rate, traffic density and speed (without 
congestion and eventually with congestion). It seems possible to estimate those parameters 
found in equation F (its optimal form may of course not be logarithmic as assumed in Table 
15), distinguishing not only between speed, traffic and traffic density93 effects on fatalities but 
also on other categories of injured victims. 
 

                                                 
90 In Fridstrøm’s model, distinct Box-Cox transformations of traffic and traffic density variables make it possible 
to identify both effects, which is impossible with a logarithmic form. Is is much more general than the model by 
Edlin & Karaca-Mandic (2006) which only has density and tries linear and strictly quadratic versions of that 
variable, a somewhat primitive specification in comparison with Fridstrøm’s, which these authors have clearly 
not read. 
91 The source is Ch. 6, p. 45, Figure 6.2; the graph contains 4788 monthly observations on the 19 counties. The 
isolated observations found in the flat part of the curve, in the range of 110 to 230,000 cars-km per month, are 
for Oslo. 
92 In Part 2, we noted that the DRAG-3 model included an explicit reversed U-shaped curve for the frequency of 
fatal accidents and for the mortality rate. This makes the sign of the exposure variable vary according to the 
month. 
93 There is a conceptual difference between speed and density, even if they are both linked by a function on a 
given link, as in Figure 25 where the form of the reversed U-shaped curve varies with the severity of accidents. 
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Hopefully, this research hypothesis, by identifying separate effects for traffic, density, speed 
and occupation rate, might explain both for the 1972-1973 peak and the regional differences 
found in our countries. These differences indicate that the density/speed factor plays a role 
that may explain why population density is used as a classification factor among road types. 
Combined with the occupancy rate, this hypothesis can be called the “speed/occupancy 
conjecture”. 

9.3.4. The role of economic activities 
In models of transportation demand, including demand for road use, the variables describing 
economic activity vary in precision and detail. Annual models favor the use of the Gross 
Domestic Product (GDP) or National Income as the general measure of economic activity. 
But such models tend to neglect the role of secondary activities closely correlated to GPD on 
a yearly basis. The effect of GDP on the demand for transportation is thus an imperfect 
representation of the exact impact of final and intermediary activities. 
 
However, as soon as quarterly or monthly figures are used, the role of these various 
intermediary economic activities (in the input-output matrix sense) for any explanation 
becomes more interesting, as shown for instance by Foos & Gaudry (1986) and Blum et al. 
(1988) for the demand for road use in Germany. These studies show that all intermediary 
activities are relevant and that their specific elasticities are identifiable: the levels of 
intermediate economic activities across sectors vary considerably on a monthly or quarterly 
basis. The question that may then be asked is what a doubling of total (intermediary and final) 
economic activities implies for total demand for road use by people and goods. 
 
The answer provided by the monthly meso-economic models of the DRAG family, where 
intermediate activities have been most extensively distinguished, is clear: if economic activity 
is doubled while other factors such as rate of motorization and prices remain the same, the 
demand for road use also doubles. This is demonstrated in the Quebec application of DRAG-2 
(Fournier & Simard, 2000) where 18 economic activities were taken into account (9 involving 
cars and 9 involving trucks). This was also the case of the I-DE model for Spain (Bernardos & 
Arenas, 2008; Aparicio et al., 2009) where 8 economic activities were distinguished. 
Doubling [ Â ], at a given congestion level, approximately doubles [ DR ] in short-term 
monthly models. 

9.3.5. Expected value of indicators conditional on activity and car occupancy  
What can be expected at best? As mentioned earlier, car occupancy rates are getting close to 
1,00 and will soon stop falling. But as long as the economy keeps growing, the total demand 
for transportation and the road share will play an important role. Ceteris paribus, the hard 
core nature of these two factors is enough to seriously question the realism of the goal of a 
division by 10 of the number of fatalities in France. 

9.4. Uncoupling transport from the economy in the medium term?  
The most difficult task modelers have to face in regard to the levels of economic activity and 
the demand for transportation is to propose forecasts for the medium term. Given the fact that 
this problem is an issue of critical importance and that it has not been studied in depth yet, the 
following questions arise: which long-term trends will affect the demand for transportation, 
particularly the demand for road use, in France and elsewhere? Do the trends and possibilities 
of uncoupling transport from the economy vary according to whether we study people or 
goods? A few studies made in France recently (e.g., CGPC, 2006) forecast a partial but small 
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uncoupling: these are based on an elasticity of mobility with respect to GDP slightly lower 
than 1.0. Let us look at this question, drawing extensively from Gaudry (2009). 

9.4.1. Economic growth and the total demand for transport 
Contrary to the total demand for energy, the total demand for transport94 (all modes included) 
is hard to dissociate from economic activity in the sense that one might hope for a strong 
decrease in the number of person-km and ton-km per marginal unit of GNP. It could not 
easily match the reduction in energy use per unit of GNP that followed the rise of the price of 
oil in October 1973 (when OPEC was created) and once again in 1980 (when OPEC was 
revived). 
 
This close secular relationship between economic growth and transport demand, implicit in 
Figures 27 and 28 for person-km/day and ton-km/year, will remain strong unless the favorable 
trends in fuel prices and regulatory obstacles to transport dramatically change. 
 
And then we still have to clearly differentiate between transporting persons and moving tons 
of goods, either multiplied or not by kilometers traveled. Other factors may also come into 
play. For instance, recent figures show that total tons lifted (carried) in the European 
Community (15 countries) has declined since 1970, but that, at the same time, the number of 
tons-km has increased faster than the GDP of that Community (Joignaux et al., 2002). If we 
are to better understand this uncoupling, the reconciliation of models of tons lifted and of ton-
km moved, of spatial cross analyses and national aggregates, will be needed. 
 

Figure 27. Daily distance covered per person, France, 1800-1990 (Grübler, 1990) 

 
 

                                                 
94 To confirm this point, we would need to discuss further units of measurement: people or tons, kilometers. The 
idea proposed by Zahavi (1979) and reiterated by Marchetti (1994), citing data from Grübler (1990) on person-
km and messages sent in France, is tantamount to an assumption of a strongly diminishing utility of time after an 
hour on the road. It implies that faster means proportionately further and implies a corresponding surface change 
for urbanized areas. In recent successive French national transportation surveys (1978-1979; 1993-1994) the 
average time spent per adult in daily travel was slightly more than 20 minutes. However, the average distance 
traveled by plane doubled from 600 to 1 200 km per flight. 
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9.4.2. Zahavi’s conjecture on the willingness to travel 
Zahavi’s conjecture pertains only to travel time: the willingness to travel would decrease 
abruptly after a one hour per day “limit”. The global numbers shown in Figure 27 seem to 
indicate, simultaneously with an extraordinary increase in the distance traveled, the presence 
of an asymptote in the sense that, as income rises and transportation technologies (and 
regulation) evolve (including cost), the overall time spent per trip does not seem to be 
affected. The distribution between modes of transportation (slow and rapid) and the distance 
traveled95 are the two components that do indeed change in easily measurable ways. 
 
This fact, however, does not apply to the United States where the average time traveled tends 
to increase with urban GDP (Crozet & Joly, 2004). This could be explained by the high 
gradient of land rents in North American urban sprawl: longer commuting time means 
relatively better access to cheaper land and housing than it does in Europe or in Asia. 
Consumers are then led to buy larger lots, even small ranches (e.g. outside Denver), all the 
while knowing that doing so increases commuting time. This option is not available in more 
populated countries where the density of population produces a flatter slope of the cost of 
land from center to periphery (of the rent gradient). Such differences between Europe and 
North America are compatible with the fact that, ever since the beginning of the 20th Century, 
the CBD core to suburb gradient has decreased everywhere, in both Europe and America. 

9.4.3. What of goods?  
No evidence has yet been presented on a `saturation” level of the total demand for 
transporting goods in relation to economic growth. The longest known series of data on the 
subject are the ones presented in Figure 28 (Sauvant, 2002). They cover the closing of coal 
mines and the passage to nuclear energy in France. Apart from the exclusion of two wartime 
periods, no information would lead us to think that the trend (1.7% per year, exactly as for the 
total in Figure 27) has changed. 

 

Figure 28. Secular trends of freight traffic in France 
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This is surprising to the extent that the share of the service sector in the economy keeps 
growing. Chances are that we have little if any data on the goods consumed by the service 
sector that can be used in the input-output analyses originally designed for goods (Leontief, 

                                                 
95 For example, the average distance traveled by plane has doubled in France during the period between the last 
national surveys i.e., 1978-1979 and 1993-1994. This distance went from 600 to 1 200 km per flight. 
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1941) and later spatialized (Moses, 1955) in ways that are still used today in transport 
modeling (Cascetta & Di Gangi, 1996). If we wish to understand why an electronic office in 
New York today managed to double its consumption of paper between 1990 and 2000, we 
need to refine our analyses… 

9.4.4. The Luddite instinct: communications as substitutes for transportation 
What should one expect from communications? We like to think that the more 
communication infrastructure we have, the smaller the need for transport. This assumes that 
more of one input means less of the other or that more capital equals less labor. On this point, 
the past 250 years have proven that the reverse is the case: the amount of capital per worker 
has been multiplied by more than a factor of 10 and employment has also grown enormously. 
Let us look at Figure 29 from Grübler (1990) and see where history resides. 
 
One look at that figure is enough to put aside the assumption that better communications 
result in a decreasing demand for transport. For the past three centuries, no notable downward 
trend in demand for transport has occurred following technological innovations in 
communications. None, among the Royal Postal service, the telegraph, telex, fax machines or 
the Internet, have produced a perceptible effect on the aggregate demand for transport (of 
both people and goods). Teleconferencing (2D) was also supposed to curb the demand for 
travel, but it hasn’t done so, in spite of its growing popularity. It has now evolved into 3D 
teleconferencing. Will this really affect the demand for transport? 
 
But why do two modes of putting people in relation appear to Luddites and others as 
substitutes but in fact behave in the aggregate as complements? It is possible that, when the 
question is asked for the first time, the set of economic activities [ Â ] is assumed known and 
fixed, but that it changes when relative prices change ? How might this make sense? 
 

Figure 29. Daily distance covered and messages sent per person, France, 1835-1990 

 

9.4.5. Implicit corollary on communications and transport as inputs 
If there is a relation between transport and communications, it clearly seems to be one of 
complementarity rather than one of substitution ― at least in figure 29. It is possible that, 
even if communications were to cost nothing at all, the demand for transport would not stop 
increasing. To understand why, let us study Figure 30. 
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Extracted from Gaudry (1998), Figure 30 represents the classic demand input framework. 
First replace capital and labor inputs with transport T and communications C at levels 
required for a given economic activity represented by a classic isoquant; and then focus on 
new economic activities resulting from lower communications costs. The initial budget of the 
new activity Â is null because the minimum level of communication required is not accessible 
at this price. But a price drop of C changes the demand for communications and the demand 
for transport together from point 1, twice null, to point 2, twice positive, i.e. now feasible due 
to the price drop. 
 
Transport and communications, on the surface of it or short-term, seem to be substitutes. But 
on the long-term the means of bringing people together behave, as aggregates, rather more 
like complements. We implicitly assumed that the sum of all economic activities was 
unchanging. But in fact, companies frequently move the location of their facilities or 
departments, from accounting to production96. In addition new economic activities emerge: 
university professors become dissertation advisors to foreign students afar, something that 
could not be done when communication costs were high. But this also creates a new demand 
for travel. 
 

Figure 30. New activity Â, resulting from a fall in communication relative to transport cost 
 

 
 
In conclusion, it seems that we cannot count on communications to solve our transportation 
problems. Communications will continue to expand and grow but will always remain 
complementary to transportation; the same way capital and labor are complementary. 

9.4.6. Expectations from uncoupling and from the demand for road 
transport? 
What can be expected from uncoupling? And from road demand? Actually, nothing. If the 
costs of transportation do not rise, and if regulation does not curb its development, the 
demand for the transport of people and goods will keep growing with the economy. And new 
communication technologies and tools will remain gross complements to transport. 
 

                                                 
96 This unbundling is nothing new. For instance, workers nowadays seldom sleep at the plant, but it was often the 
case one hundred years ago, as it is in China. 
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Conclusion: some hard questions for road safety experts 

10.1. Unconnected research pebbles or dotted stream paths after Smeed 
and Weber? 
 
The threads running through aggregate and discrete models, distinguished in this survey are 
presented as somewhat interconnected research streams but this continuity is, for a part, a 
retrospective construct because known milestones of aggregate modeling, such as Peltzman 
(1975), fail to mention any of the most obvious seminal antecedents (i.e. Smeed, 1949 or 
1968; Smeed & Jeffcoate, 1969), despite their obvious relevance and use of the same log-log 
format on similar variables; and because we have yet to find a major discrete accident 
frequency model referring to the foundation work by Weber (1970, 1971), in this case a 
neglect bordering on indecency in papers using the same approach, variables (notably past 
accident, infraction, or criminal records) and even the same Poisson estimator. 
 
As both Smeed and Weber are available in mainstream journals, their lack of recognition by 
so many must be imputed either to serial accidental memory failings or to the loss of the 
ability to do develop, or consult, bibliographies on road safety such as Haight’s (1964) who, 
for one, lists about 40 of Smeed’s articles ― Haight could recognize predecessors. 

10.2. Latent conclusions and unanswered questions 
Our bringing together, in the same survey, aggregate and discrete models made us very aware 
of a number of unanswered questions that could be put to road safety experts. We select a few 
here, already found in the state-of-the-art triplet97, for further comment. 

10.2.1. From peak to valley or plain? A speeddensityvehicle occupancy 
conjecture 
 
It is pointed out in Table 2 of Part 1 that a Meadow/Matterhorn/Cervin-shaped peak in road 
fatalities happened almost simultaneously in many advanced economies: remarkably, 18 
countries reached their maximum between 1970 and 1973 ― 10 of which jointly (to the 
month of August) in 1972. These 18 countries have all seen a downward trend since, except 
perhaps for the U.S. which deserve some comment. 
 
As seen on Figure 1, the U.S. toll evolved from the maximum of 1972 (at 54 58998) 
downwards until a (third) local minimum in 1992 (at 39 235). It then climbed continuously 
until 2005 (at 43 550) and fell again, between 2006 and 2010 (at 32 885): there remains some 
doubt as to whether this last bulge is strictly consistent with the previous trend and, the 
economic cycle taken into account, whether the U.S. are still in step with the remaining 17. 
 
The peak of 1972 was noted early, for instance by Haight (1984), and the subsequent 
downward slope (or similar ones) has been cause for self-congratulations in many countries; 
but, in the absence of an understanding of the causes of the maximum99, it is hard to decide 
whether compliments are deserved. It is harder still to forecast the future, taking due account 
of a slowing down of improvements in many of the 18 countries and in closely related ones 

                                                 
97 We refer to these as Part 1, Part 2 and Part 3 without further qualification. 
98 The order of magnitude of the number of American soldiers killed during the 10 years of the Viet-Nam War. 
99 Except for strict statistical issues on the measurement of fatalities. 
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like Sweden (see Figures 22 and 23 of Part 3) and the United Kingdom, which both peaked 
slightly before the reference 18 did. 
 
Unfortunately, simply working with per capita instead of absolute fatality values does little to 
change this time profile question because population varies much less fast than road fatalities 
rise or fall, even in countries where population growth has been significant100. It needs to be 
asked whether the countries clouded in the “mystery of 1972-1973” or nearby are 
approaching a minimum or a plain and whether the U.S. trend still parallels that of the other 
17, or not. 
 
For the U.S. to still be in step, the local maximum of 2005 must result primarily from an 
economic expansion ending clearly in 2006 with the collapse of the housing boom101, rather 
than with the freezing of money market liquidity (2007) or the collapse of Lehman Brothers 
(2008). And the analysis of fatal accidents gives reasons to think that this is the case. 
 

Figure 1. Yearly road fatalities in the USA 1965-2010 
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It has indeed been noted by Sivak & Schoettle (2010) that, between 2005 and 2008, last year 
for which detailed data were available to them, U.S. road fatalities dropped disproportionately 
in peak AM and PM time periods, in accidents with 2 or more fatalities, in accidents of the 
less than 25 years of age and in accidents for those with 2 or more previous accidents over the 
period. These indicators suggest an extremely severe recession creating unemployment in 
lower economic groups102, notably among the young. 
 
As a sudden return to boom conditions of 2005 would imply an increase of about 11 000 
fatalities per year, it is tempting (in the absence of a more sophisticated analysis) to treat the 
maximum of 2005 as primarily caused by the economic cycle: perhaps is the “fourth pillar” of 

                                                 
100 In Israel, the highest number, 702 in 1974, fell slowly to 314 by 2009 despite significant population growth. 
101 As claimed by Krugman (2012). 
102 Lower economic groups tend to have higher accident rates. This almost universal finding comforts the view 
that the generally favorable role of educational attainment levels in the explanation of accidents essentially 
results from a selection bias, to the extent that the sitting power required for studying differs from that required 
for driving and implicitly selects individuals with specific behavior towards risk or “accident proneness”. If 
educational attainment variable selects low risk takers, it may not come as a surprise that drivers of light utility 
vehicles have relatively high accident rates. 
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road safety analysis dictating fluctuations again (in particular between 1992 and 2010) and 
does the trend remain, as before and elsewhere, downward and perhaps even unbending. 
 
To make sense of the peak that occurred some 40 years ago and of the current evolution, we 
propose in Part 3 (Table 15, Equation F) the Speed/traffic density/vehicle occupancy rate 
Conjecture, an extension103 and reinterpretation of the Smeed model. It is testable, even if 
experimental strategies are not yet elaborated for discrete models104 where the multinational 
datasets useful to answer the question are for the moment unknown. In our view, this opens 
up a research topic. 

10.2.2. An asymptotic plain made up of hard core strata plus randomness? 
First, and as already alluded to, there are in many countries ― including Sweden and the 
United Kingdom ― indications of a slowing down of the rates of improvement in morbidity 
and mortality rates, but the stratification of any asymptote remains vague and uncertain105. In 
addition to the evolution of explanatory factors the effects of which are thought to be 
identifiable, and still to matter on the way towards any limit, there appear to be hard core 
accidents “immune” to measures or “incompressible” (Stipdonk et al., 2005). This points to 
the possible existence of a natural rate of road mortality, a concept we discuss and contrast 
with that of conditional expected road safety performance. But the distinction between 
bottom-of-the-barrel unresponsiveness in drivers, uncontrollable factors and the 
randomness level inherent to accidents is however not easy to make. Consider the first two. 

A. The return of accident proneness and the move towards individualized 
pricing 
We present in Part 1 (Figure 7.B) the extraordinarily Weberian results outlined by Krupp 
(2005), based on Schade & Heinzmann (2004) . Working with very large German samples, 
they showed that, although relative accident rates per kilometer driven are known to differ by 
a factor as large as 7 or 8 across age-sex groups (as represented in Figure 7.A), the relative 
individual accident risk during any period is indeed a function of the number of past 
infractions (as Weber taught us 40 year ago) but that difference happens to be strictly 
independent from age or sex. Risk-taking individuals could therefore be life-long bad 
apples106 … because their relative badness does not depend on age107 or sex differences: 
equality of the sexes at last ― of their relative offensive behavior! A stunning result. 
 
This sort of finding implies that some apparently effective safety measures, such as speed-
radar photo enforcement (SPE) in France ― understood to cause so many losses of driving 
permits that perhaps as many as 150 000 individuals have recently been added to the ranks of 
those who drive without them ― pose real sustainability questions if the consequences cannot 

                                                 
103 An ideal topic for the Reuben Smeed Centenary recently advertised by University College London. 
104 An exploratory strategy for models based on aggregate data is outlined in Gaudry & Gelgoot (2002). 
105 Despite this, the 2011 White paper of the European Commission aims at a 50% reduction in fatalities by 2020 
and approaching 0 in 2050. 
106 For instance, the Jun et al. (2011) study based on longitudinally-measured GPS speed data of light-duty 
vehicles found that “at most times (spatially and temporally), drivers who had crash experiences tended to drive 
at higher speeds than crash-not-involved drivers except in freeway travels during a.m. peak hours. Crash-
involved drivers also showed higher tendencies of non-compliance with the posted speed limit.” Strictly 
Weberian again. 
107 This result is consistent with the finding by Bolduc et al. (1993, 1994, 2012; Table 11) that the effects of 
various particular past traffic code violations on accident probability vary across the four age groups. The 
samples used by Schade & Heinzmann are much larger and structure vilolations differently. 
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be managed. It also means that measures progressively eliminating108 the cross-subsidies 
across individuals found in insurance systems109 ― and forcing insurance prices towards 
individualized experience rating ― will bring out so much variability in safety performance 
across individuals that political pressures could build against price structures changing from 7 
or 8 age-sex risk categories per kilometer driven towards 35 or 40 experience rated neutral 
categories ― devoid of any age-sex discrimination because strictly experience-rated. 
Removal of the protection of averages and price caps on insurance prices will not be easy 
because it could price many out of the market or into jail. 
 
Concerning capacities linked to age and sex, insurance pricing is moving away from group 
justice (based on the first moment of accident risk linked to age and sex) towards individual 
justice (based on the second and third moments measured by experience rating). Concerning 
alcohol consumption however, legal blood alcohol concentration (BAC) levels (assumed to be 
monotonic indicators of the first moment of accident risk110) are imposed at the expense of 
individual experience rating (higher moments of actual performance while impaired). “Group 
justice” is avoided through experience rating legislation in one network access dimension and 
re-established in another through BAC legislation forbidding experience rating. Why are the 
moments of accident risk not treated equally across explanatory factors? 

B. Are there putty factors that offer no clay handle to policy makers? 
Let us consider some representative examples of the numerous interesting matters left out of 
the state-of-the art, focusing on interesting facts linked to the difficulty of fighting inattention 
and fatigue, factors which might be part of the “incompressible” accidents.  
 
Start with run-off-the-road (ROR) incidents. The life expectancy of someone standing on the 
side of tolled French highways is said by their managers to be about 20 minutes111. And in the 
U.S., the single greatest category of highway vehicle crashes is indeed run-off-the-road 
(ROR) incidents. Can anything be done?  
 
One known option is shoulder paving, recognized as a positive countermeasure to reduce a 
shoulder drop-off hazard: significant material differences and elevation changes in shoulder 
edges pose a potential safety hazard when a vehicle leaves the travel way. But what happens 
after all shoulders are paved? Liu & Ye (2011) have shown that (i) the most influential factors 
in the occurrence of single-vehicle ROR crashes were the factors “driver inattention,” “driver 
was fatigued,” and “driver was in a hurry”; (ii) the odds of being involved in ROR crashes for 
the vehicles equipped with neither ABS nor ESC were 2.1 times greater than the odds for the 
vehicles equipped with both ABS and ESC. So some inattention, lack of vigilance and fatigue 
can be partly compensated for, assuming that car equipment is not a proxy for driver 
characteristics and that drivers do not spend the gain in increased risk taking. 
 
                                                 
108 An example is that of the European Court of Justice that outlawed discrimination on the basis of sex in June 
2011, a movement that should logically lead to the removal of age-based discrimination in the future. But what 
will happen if, following Weber’s specification, risky road behavior (speeding, running red lights, excessive 
blood alcohol concentration) is shown to be correlated with other forms of criminal behavior? Will a criminal 
dossier be accepted as an insurance pricing criterion because it is demonstrably experience-rated? 
109 For instance, in many places, such as Quebec, the insurance premia for motorized two-wheel vehicles are 
capped for political reasons and motorcyclists are, relatively and absolutely subsidized by other drivers. 
110 Whether alcohol consumption is monotonically related to accident risk is another question. 
111 Interviews of 3500 drivers at toll barriers of a French highway in July 2011 revealed that 42% of them had 
driven on the noise-producing markings of highway shoulder edges during the year, 16% because of somnolence 
and 71% by distraction (Negroni, 2011).  
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A second case is that of pedestrian accidents. In the USA from 2005 until 2009, 12% of road 
fatalities were pedestrians. In 61% of the cases (and in all cases of frontal collisions), street 
crossing pedestrians were hit by drivers who were going straight with no visual obstruction 
and only 13% of those hit the brakes in those fatal impacts, as well as in non fatal ones (IIHS, 
2011). Hard to model again … 
 
A third example is that of truck involvement in fatal accidents. In the U.S. from 2004 until 
2008, the other vehicle crossed the center line of the road and struck the truck head on in 
11.0% of fatal involvements of trucks (Jarossi et al., 2011). In addition, in 2009, those large 
trucks were four times more likely than other vehicles to be struck in the rear in two-vehicle 
fatal crashes (NHTSA, 2011). Are large trucks attracting cars? 
 
And do these three factors belong to an “almost uncompressible” category or to randomness? 

10.3. Puzzle: making sense of the popularity of conditional severity 
models 
In addition to neglected questions, the state-of-the-art also puts aside comments on the 
distribution of safety topics in journals. One puzzling development is the growing popularity 
of discrete severity models, documented in Part 2 (e.g. in Table 12), if only because this 
dimension is somewhat secondary to that of frequency in many aggregate models. It is clear 
from authors’ comments that they relate more closely to their frequency than to their severity 
dimensions (morbidity and mortality), and that they have many anticipations and intuitions 
concerning frequency but fewer with respect to severity, if they make the distinction at all ― 
even Peltzman (1975) did not. Imagine the difficulty of defining a priori distributions of 
values for severity models, as opposed to frequency models: uniform or Jeyffreys 
distributions112 could be favored more often in the former than in the latter case! 
 
To make sense of this growing practice, we argue here that conditional severity models are in 
fact interesting for authors because researchers implicitly consider that they tell us something 
about frequency, the dimension they relate more easily to. One must therefore ask how much 
conditional severity actually tells us about frequency and whether authors can be forgiven for 
interpreting their results as they sometimes do ― slipping from the likes of “variable Xk 
influences the conditional probability of bodily injury accidents more than the conditional 
probability of material damage accidents” to “variable Xk influences the probability of bodily 
injury accidents more than the probability of material damage accidents”. Can the 
“conditional” qualification ever be safely dropped? 
 
To answer the question, we borrow the Quasi-Direct Format from Part 3 and, instead of 
multiplying a model of total transport demand for all modes by a mode split model to obtain 
the demand by mode, we multiply a model of total accident frequency A by a conditional 
severity model explaining the probability of each severity category pc: the result of the 
multiplication is naturally the number of accidents by severity category Ac: 
 
(1-A) [ ]{ }c cA A p=  c = 1, … , C 
 
where the multiplied models may be generally explicated as: 
 

                                                 
112 The latter allows for a proper posterior distribution. 
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(1-B) ( ) { }1 1
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A f X X I U U=

=
⎡ ⎤= ⎣ ⎦ ∑  k = 1, …, K, 

 
with the Xk variables understood as ordinary determinants of total accident frequency (e.g. 
vehicle-km, weather, etc.) and the variable I denoting Expected Maximum Insecurity (EMI), 
an inclusive value constructed from the denominator of the split model, assumed to be a 
Linear Logit where the Uc terms associated with each severity category are of the form: 
 
(1-C) ( )0expc c k ckk

U X= β + β∑  k = 1, …, K. 
 
and the Xk variables may or may not all be present in both model components. 
 
In this structure, the coupling of the split and total models is realized by the Expected 
Maximum Insecurity (EMI) index directly inspired from the Expected Maximum Utility of 
transport modes: the logarithm of the denominator of the split model, or logsum, therefore 
summarizes the worst that can be expected in terms of insecurity. This EMI construct has 
been used in a disaggregate accident frequency model by Gaudry & Vernier (2000). 
 
The product of component models implies that the direct elasticity of the resulting number of 
accidents of a certain severity category Ac with respect to an explanatory variable Xk is given 
in the most general case (with Xk present in each component and in the EMI index) by: 
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When a variable Xk fails to appear on its own in the total accident frequency component, 
assumed for instance to be of logarithmic form, term (A) is null and, with Iβ  identifying the 
coefficient of the logsum (the severity index induction elasticity (B)), (F) reduces to: 
 

(3) { } { } [ ]{ }(1 ) ( 1) 1c k
I k k c k k c k k c I

k c

A X X p X p X p
X A

∂
= + − = − +

∂
β β β β β  

 
where it is clear that, because Xk and pc (the probability or share of accidents of category c) 
are positive, the sign of kβ  in the conditional severity model part (D) is also the sign of the 
elasticity of accidents of category c, (F), unless ( 1) 1c Ip − < −β . Of course, insecurity (or risk) 
induction elasticities Iβ  would normally be negative and much smaller than unity113, so this 
result is unlikely. Dropping the word “conditional” and reinterpreting signs in the severity 
component as indicative of the direction of effects on frequency is therefore reasonable in 
those cases.  
                                                 
113 In passenger demand models, the elasticity of total travel demand by all modes with respect to the Expected 
Maximum Utility of modes is of the order of one tenth. 



111 
 

 
When the variable Xk also appears on its own in the generation component, sign reversal 
would require that (A) be both of a different sign and larger than (B)•(C) + (D), i.e. larger 
than [ ]{ }( 1) 1k k c IX p − +β β . To see how this can occur, consider the impact of snowfall on 
fatal accidents, which are a very small part of all accidents. It is possible for (A) to be positive 
and of the order of 1 or 2 (because total accidents increase much with snowfall) while kβ  
[and (D)] are negative but ( 1) 1c Ip − > −β  due to the minute share of fatal accidents. In such 
cases, where (A) is large but (D) is small and they are of opposite signs, dropping the word 
“conditional” is not possible. And sign inversion between total frequency and conditional 
severity effects is an insufficient condition for sign inversion from (D) to (F) because the 
absolute values of elasticities and the result from the coupling product (B)•(C) also matter. 
 
The sign and elasticity size conditions for slipping from conditional severity to frequency can 
therefore be pinned down. The formulae for cross-elasticities or more complex models 
admitting of Box-Cox transformations of variables are straightforward and deserve full 
elicitation in other quarters. 
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